Citation: | Lei Xiangdong. Applications of machine learning algorithms in forest growth and yield prediction[J]. Journal of Beijing Forestry University, 2019, 41(12): 23-36. DOI: 10.12171/j.1000-1522.20190356 |
[1] |
Weiskittel A R, Hann D W, Kershaw Jr J A, et al. Forest growth and yield modeling[M]. Chichester: John Wiley and Sons, 2011.
|
[2] |
唐守正, 李希菲, 孟昭和. 林分生长模型研究的进展[J]. 林业科学研究, 1993, 6(6):672−679. doi: 10.3321/j.issn:1001-1498.1993.06.018
Tang S Z, Li X F, Meng Z H. The development of studies on stand growth models[J]. Forest Research, 1993, 6(6): 672−679. doi: 10.3321/j.issn:1001-1498.1993.06.018
|
[3] |
Peng C H. Growth and yield models for uneven-aged stands: past, present and future[J]. Forest Ecology and Management, 2000, 132(2−3): 259−279. doi: 10.1016/S0378-1127(99)00229-7
|
[4] |
Huang S L, Ramirez C, McElhaney M, et al. F3: simulating spatiotemporal forest change from field inventory, remote sensing, growth modeling, and management actions[J]. Forest Ecology and Management, 2018, 415−416: 26−37. doi: 10.1016/j.foreco.2018.02.026
|
[5] |
Cutler D R, Edwards T C, Beard K H, et al. Random forests for classification in ecology[J]. Ecology, 2007, 88(11): 2783−2792. doi: 10.1890/07-0539.1
|
[6] |
Wu C F, Shen H H, Shen A H, et al. Comparison of machine-learning methods for above-ground biomass estimation based on Landsat imagery[J]. Journal of Applied Remote Sensing, 2016, 10(3): 035010. doi: 10.1117/1.JRS.10.035010
|
[7] |
Recknagel F. Applications of machine learning to ecological modelling[J]. Ecological Modelling, 2001, 146(1−3): 303−310.
|
[8] |
Liu Z L, Peng C H, Xiang W H, et al. Application of artificial neural networks in global climate change and ecological research: an overview[J]. Chinese Science Bulletin, 2010, 55(34): 3853−3863. doi: 10.1007/s11434-010-4183-3
|
[9] |
Guan B T, Gertner G. Modeling red pine tree survival with an artificial neural network[J]. Forest Science, 1991, 37(5): 1429−1440.
|
[10] |
Guan B T, Gertner G. Using a parallel distributed processing system to model individual tree mortality[J]. Forest Science, 1991, 37(3): 871−885.
|
[11] |
李际平, 姚东和. BP模型在单木树高与胸径生长模拟中的应用[J]. 中南林学院学报, 1996, 16(3):34−36.
Li J P, Yao D H. Application of BP neural network model to the simulation of breast height diameter and tree-height growth[J]. Journal of Central-South Forestry University, 1996, 16(3): 34−36.
|
[12] |
洪伟, 吴承祯, 何东进. 基于人工神经网络的森林资源管理模型研究[J]. 自然资源学报, 1998, 13(1):69−72. doi: 10.3321/j.issn:1000-3037.1998.01.012
Hong W, Wu C Z, He D J. A study on the model of forest resources management based on the artificial neural network[J]. Journal of Natural Resources, 1998, 13(1): 69−72. doi: 10.3321/j.issn:1000-3037.1998.01.012
|
[13] |
浦瑞良, 宫鹏. 应用神经网络和多元回归技术预测森林产量[J]. 应用生态学报, 1999, 10(2):129−134. doi: 10.3321/j.issn:1001-9332.1999.02.001
Pu R L, Gong P. Forest yield prediction with an artificial neural network and multiple regression[J]. Chinese Journal of Applied Ecology, 1999, 10(2): 129−134. doi: 10.3321/j.issn:1001-9332.1999.02.001
|
[14] |
林辉, 彭长辉. 人工神经网络在森林资源管理中的应用[J]. 世界林业研究, 2002, 15(3):22−31. doi: 10.3969/j.issn.1001-4241.2002.03.004
Lin H, Peng C H. Application of artificial neural network in forest resource management[J]. World Forestry Research, 2002, 15(3): 22−31. doi: 10.3969/j.issn.1001-4241.2002.03.004
|
[15] |
黄家荣, 孟宪宇, 关毓秀. 马尾松人工林单木生长神经网络模型研究[J]. 山地农业生物学报, 2004, 23(5):386−391. doi: 10.3969/j.issn.1008-0457.2004.05.003
Huang J R, Meng X Y, Guan Y X. The study on neural network models of individual tree growth in Pinus massoniana plantation[J]. Journal of Mountain Agriculture and Biology, 2004, 23(5): 386−391. doi: 10.3969/j.issn.1008-0457.2004.05.003
|
[16] |
Peng C H, Wen X Z. Recent applications of artificial neural networks in forest resource management: an overview[C/OL]//Environmental Decision Support Systems and Artificial Intelligence. AAAI, 1999 [2019−06−16]. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.487.7652.
|
[17] |
Liu Z L, Peng C H, Work T, et al. Application of machine-learning methods in forest ecology: recent progress and future challenges[J]. Environmental Reviews, 2018, 26(4): 339−350. doi: 10.1139/er-2018-0034
|
[18] |
周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.
Zhou Z H. Machine leaning[M]. Beijing: Tsinghua University Press, 2016.
|
[19] |
Zhou Z H. Machine learning: recent progress in China and beyond[J]. National Science Review, 2018, 5(1): 20. doi: 10.1093/nsr/nwx132
|
[20] |
吴喜之. 应用回归及分类: 基于R[M]. 北京: 中国人民大学出版社, 2016.
Wu X Z. Applied regression and classification with R[M]. Beijing: China People’s University Press, 2016.
|
[21] |
Dobbertin M, Biging G S. Using the non-parametric classifier CART to model forest tree mortality[J]. Forest Science, 1998, 44(4): 507−516.
|
[22] |
Fan Z F, Kabrick J M, Shifley S R. Classification and regression tree based survival analysis in oak-dominated forests of Missouri’s Ozark highlands[J]. Canadian Journal of Forest Research, 2006, 36(7): 1740−1748. doi: 10.1139/x06-068
|
[23] |
Adamec Z, Drápela K. Comparison of parametric and nonparametric methods for modeling height-diameter relationships[J]. iForest-Biogeosciences and Forestry, 2017, 10(1): 1−8. doi: 10.3832/ifor1928-009
|
[24] |
Aertsen W, Kint V, van Orshoven J, et al. Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests[J]. Ecological Modelling, 2010, 221(8): 1119−1130. doi: 10.1016/j.ecolmodel.2010.01.007
|
[25] |
Räty M, Kangas A. Localizing general models with classification and regression trees[J]. Scandinavian Journal of Forest Research, 2008, 23(5): 419−430. doi: 10.1080/02827580802378826
|
[26] |
Piramuthu S. Input data for decision trees[J]. Expert Systems with Applications, 2008, 34(2): 1220−1226. doi: 10.1016/j.eswa.2006.12.030
|
[27] |
Rejwan C, Collins N C, Brunner L J, et al. Tree regression analysis on the nesting habitat of smallmouth bass[J]. Ecology, 1999, 80(1): 341−348. doi: 10.1890/0012-9658(1999)080[0341:TRAOTN]2.0.CO;2
|
[28] |
Friedman J H. Multivariate adaptive regression splines[J]. Annals of Statistics, 1991, 19(1): 1−67. doi: 10.1214/aos/1176347963
|
[29] |
Prasad A M, Iverson L R, Liaw A. Newer classification and regression tree techniques: bagging and random forests for ecological prediction[J]. Ecosystems, 2006, 9(2): 181−199. doi: 10.1007/s10021-005-0054-1
|
[30] |
Chojnacky D C, Heath L S. Estimating down deadwood from FIA forest inventory variables in Maine[J]. Environmental Pollution, 2002, 116(Suppl.1): S25−S30.
|
[31] |
Hart S J, Laroque C P. Searching for thresholds in climate-radial growth relationships of Engelmann spruce and subalpine fir, Jasper National Park, Alberta, Canada[J]. Dendrochronologia, 2013, 31(1): 9−15. doi: 10.1016/j.dendro.2012.04.005
|
[32] |
Moisen G G, Frescino T S. Comparing five modelling techniques for predicting forest characteristics[J]. Ecological Modelling, 2002, 157(2/3): 209−225.
|
[33] |
Ou Q X, Lei X D, Shen C C. Individual tree diameter growth models of larch-spruce-fir mixed forests based on machine learning algorithms[J]. Forests, 2019, 10(2): 187. doi: 10.3390/f10020187
|
[34] |
Lee T S, Chiu C C, Chou Y C, et al. Mining the customer credit using classification and regression tree and multivariate adaptive regression splines[J]. Computational Statistics and Data Analysis, 2006, 50(4): 1113−1130. doi: 10.1016/j.csda.2004.11.006
|
[35] |
Heddam S, Kisi O. Modelling daily dissolved oxygen concentration using least square support vector machine, multivariate adaptive regression splines and M5 model tree[J]. Journal of Hydrology, 2018, 559: 499−509. doi: 10.1016/j.jhydrol.2018.02.061
|
[36] |
Breiman L. Random forests[J]. Machine Learning, 2001, 45(1): 5−32. doi: 10.1023/A:1010933404324
|
[37] |
Friedman J H. Greedy function approximation: a gradient boosting machine[J]. Annals of Statistics, 2001, 29(5): 1189−1232.
|
[38] |
Goldstein A, Kapelner A, Bleich J, et al. Peeking inside the black box: visualizing statistical learning with plots of individual conditional expectation[J]. Journal of Computational and Graphical Statistics, 2015, 24(1): 44−65. doi: 10.1080/10618600.2014.907095
|
[39] |
Strobl C, Boulesteix A L, Kneib T, et al. Conditional variable importance for random forests[J]. BMC bioinformatics, 2008, 9: 307. doi: 10.1186/1471-2105-9-307
|
[40] |
Weiskitte A R, Crookston N L, Radtke P J. Linking climate, gross primary productivity, and site index across forests of the western United States[J]. Canadian Journal of Forest Research, 2011, 41(8): 1710−1721. doi: 10.1139/x11-086
|
[41] |
Bond-Lamberty B, Rocha A V, Calvin K, et al. Disturbance legacies and climate jointly drive tree growth and mortality in an intensively studied boreal forest[J]. Global Change Biology, 2014, 20(1): 216−227. doi: 10.1111/gcb.12404
|
[42] |
Kilham P, Hartebrodt C, Kändler R G. Generating tree-level harvest predictions from forest inventories with random forests[J]. Forests, 2019, 10(1): 20.
|
[43] |
欧强新, 雷相东, 沈琛琛, 等. 基于随机森林算法的落叶松-云冷杉混交林单木胸径生长预测[J]. 北京林业大学学报, 2019, 41(9):9−19.
Ou Q X, Lei X D, Shen C C, et al. Individual tree DBH growth prediction of larch-spruce-fir mixed forests based on random forest algorithm[J]. Journal of Beijing Forestry University, 2019, 41(9): 9−19.
|
[44] |
Nunes M H, Görgens E B. Artificial intelligence procedures for tree taper estimation within a complex vegetation mosaic in Brazil[J/OL]. PLoS One, 2016, 11(5): e0154738 [2019−10−02]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0154738.
|
[45] |
De ’ath G. Boosted trees for ecological modeling and prediction[J]. Ecology, 2007, 88(1): 243−251. doi: 10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2
|
[46] |
Freeman E A, Moisen G G, Coulston J W, et al. Random forests and stochastic gradient boosting for predicting tree canopy cover: comparing tuning processes and model performance[J]. Canadian Journal of Forest Research, 2016, 46(3): 323−339. doi: 10.1139/cjfr-2014-0562
|
[47] |
Kuhn M, Johnson K. Applied predictive modeling[M]. New York: Springer, 2013.
|
[48] |
Elith J, Leathwick J R, Hastie T. A working guide to boosted regression trees[J]. Journal of Animal Ecology, 2008, 77(4): 802−813. doi: 10.1111/j.1365-2656.2008.01390.x
|
[49] |
Mezei P, Grodzki W, Blaženec M, et al. Host and site factors affecting tree mortality caused by the spruce bark beetle (Ips typographus) in mountainous conditions[J]. Forest Ecology and Management, 2014, 331: 196−207. doi: 10.1016/j.foreco.2014.07.031
|
[50] |
Sproull G J, Adamus M, Bukowski M, et al. Tree and stand-level patterns and predictors of Norway spruce mortality caused by bark beetle infestation in the Tatra Mountains[J]. Forest Ecology and Management, 2015, 354: 261−271. doi: 10.1016/j.foreco.2015.06.006
|
[51] |
Oguro M, Imahiro S, Saito S, et al. Relative importance of multiple scale factors to oak tree mortality due to Japanese oak wilt disease[J]. Forest Ecology and Management, 2015, 356: 173−183. doi: 10.1016/j.foreco.2015.07.016
|
[52] |
Cai W H, Yang J, Liu Z H, et al. Post-fire tree recruitment of a boreal larch forest in Northeast China[J]. Forest Ecology and Management, 2013, 307: 20−29. doi: 10.1016/j.foreco.2013.06.056
|
[53] |
De Cauwer V, Fichtler E, Beeckman H, et al. Predicting site productivity of the timber tree Pterocarpus angolensis[J]. Southern Forests: a Journal of Forest Science, 2017, 79(3): 259−268. doi: 10.2989/20702620.2016.1256042
|
[54] |
Razakamanarivo R H, Grinand C, Razafindrakoto M A, et al. Mapping organic carbon stocks in eucalyptus plantations of the central highlands of Madagascar: a multiple regression approach[J]. Geoderma, 2011, 162(3−4): 335−346.
|
[55] |
Lin D M, Anderson-Teixeira K J, Lai J S, et al. Traits of dominant tree species predict local scale variation in forest aboveground and topsoil carbon stocks[J]. Plant and Soil, 2016, 409(1−2): 435−446.
|
[56] |
欧强新, 李海奎, 杨英. 福建地区马尾松生物量转换和扩展因子的影响因素[J]. 生态学报, 2017, 37(17):5756−5764.
Ou Q X, Li H K, Yang Y. Factors affecting the biomass conversion and expansion factor of Masson pine in Fujian Province[J]. Acta Ecologica Sinica, 2017, 37(17): 5756−5764.
|
[57] |
欧强新, 李海奎, 雷相东, 等. 基于清查数据的福建省马尾松生物量转换和扩展因子估算差异解析:3种集成学习决策树模型的比较[J]. 应用生态学报, 2018, 29(6):2007−2016.
Ou Q X, Li H K, Lei X D, et al. Difference analysis in estimating biomass conversion and expansion factors of masson pine in Fujian Province, China based on national forest inventory data: a comparison of three decision tree models of ensemble learning[J]. Chinese Journal of Applied Ecology, 2018, 29(6): 2007−2016.
|
[58] |
Ren Y, Chen S S, Wei X H, et al. Disentangling the factors that contribute to variation in forest biomass increments in the mid-subtropical forests of China[J]. Journal of Forestry Research, 2016, 27(4): 919−930. doi: 10.1007/s11676-016-0237-y
|
[59] |
Aertsen W, Kint V, De Vos B, et al. Predicting forest site productivity in temperate lowland from forest floor, soil and litterfall characteristics using boosted regression trees[J]. Plant and Soil, 2012, 354(1−2): 157−172.
|
[60] |
Mitsopoulos I, Xanthopoulos G. Effect of stand, topographic, and climatic factors on the fuel complex characteristics of Aleppo (Pinus halepensis Mill.) and Calabrian (Pinus brutia Ten.) pine forests of Greece[J]. Forest Ecology and Management, 2016, 360: 110−121. doi: 10.1016/j.foreco.2015.10.027
|
[61] |
Fricker G A, Synes N W, Serra-Diaz J M, et al. More than climate? Predictors of tree canopy height vary with scale in complex terrain, Sierra Nevada, CA (USA)[J]. Forest Ecology and Management, 2019, 434: 142−153. doi: 10.1016/j.foreco.2018.12.006
|
[62] |
王星. 大数据分析: 方法与应用[M]. 北京: 清华大学出版社, 2013.
Wang X. Big data analysis: methods and applications[M]. Beijing: Tsinghua University Press, 2013.
|
[63] |
Ciaburro G, Venkateswaran B. 神经网络: R语言实现[M]. 李洪成, 译. 北京: 机械工业出版社, 2018.
Ciaburro G, Venkateswaran B. Neural networks with R[M]. Li H C, trans. Beijing: China Machine Press, 2018.
|
[64] |
Ciaburro G, Venkateswaran B. Neural networks with R: smart models using CNN, RNN, deep learning, and artificial intelligence principles[M]. Birmingham: Packt Publishing, 2017.
|
[65] |
Hasenauer H, Merkl D, Weingartner M. Estimating tree mortality of Norway spruce stands with neural networks[J]. Advances in Environmental Research, 2001, 5(4): 405−414. doi: 10.1016/S1093-0191(01)00092-2
|
[66] |
Castro R V O, Boechat Soares C P, Leite H G, et al. Individual growth model for Eucalyptus stands in Brazil using artificial neural network[J/OL]. ISRN Forestry, 2013, 2013: Article ID 196832 [2019−05−18]. https://www.hindawi.com/journals/isrn/2013/196832/.
|
[67] |
Reis L P, de Souza A L, dos Reis P C M, et al. Estimation of mortality and survival of individual trees after harvesting wood using artificial neural networks in the amazon rain forest[J]. Ecological Engineering, 2018, 112: 140−147. doi: 10.1016/j.ecoleng.2017.12.014
|
[68] |
da Rocha S J S S, Torres C M M E, Jacovine L A G, et al. Artificial neural networks: modeling tree survival and mortality in the Atlantic Forest biome in Brazil[J]. Science of the Total Environment, 2018, 645: 655−661. doi: 10.1016/j.scitotenv.2018.07.123
|
[69] |
Bayat M, Ghorbanpour M, Zare R, et al. Application of artificial neural networks for predicting tree survival and mortality in the Hyrcanian forest of Iran[J]. Computers and Electronics in Agriculture, 2019, 164: 104929. doi: 10.1016/j.compag.2019.104929
|
[70] |
Soares F A A M N, Flôres E L, Cabacinha C D, et al. Recursive diameter prediction and volume calculation of eucalyptus trees using multilayer perceptron networks[J]. Computers and Electronics in Agriculture, 2011, 78(1): 19−27. doi: 10.1016/j.compag.2011.05.008
|
[71] |
Ashraf M I, Zhao Z Y, Bourque C P A, et al. Integrating biophysical controls in forest growth and yield predictions with artificial intelligence technology[J]. Canadian Journal of Forest Research, 2013, 43(12): 1162−1171. doi: 10.1139/cjfr-2013-0090
|
[72] |
Vieira G C, de Mendonça A R, da Silva G F, et al. Prognoses of diameter and height of trees of eucalyptus using artificial intelligence[J]. Science of the Total Environment, 2018, 619: 1473−1481. doi: 10.1016/j.scitotenv.2017.11.138
|
[73] |
马翔宇, 段文英, 崔金刚. 白桦人工林单木生长的人工神经网络模型研究[J]. 森林工程, 2009, 25(3):30−33, 38. doi: 10.3969/j.issn.1001-005X.2009.03.007
Ma X Y, Duan W Y, Cui J G. Study on the artificial neural network model of individual tree growth in the Betula platyphlla plantation[J]. Forest Engineering, 2009, 25(3): 30−33, 38. doi: 10.3969/j.issn.1001-005X.2009.03.007
|
[74] |
沈剑波, 雷相东, 李玉堂, 等. 基于BP神经网络的长白落叶松人工林林分平均高预测[J]. 南京林业大学学报(自然科学版), 2018, 42(2):147−154.
Shen J B, Lei X D, Li Y T, et al. Prediction mean height for Larix olgensis plantation based on Bayesian-regularization BP neural network[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2018, 42(2): 147−154.
|
[75] |
车少辉, 张建国, 段爱国, 等. 杉木人工林胸径生长神经网络建模研究[J]. 西北农林科技大学学报(自然科学版), 2012, 40(3):84−92.
Che S H, Zhang J G, Duan A G, et al. Modelling tree diameter growth for Chinese fir plantations with neural networks[J]. Journal of Northwest A&F University (Natural Sciences Edition), 2012, 40(3): 84−92.
|
[76] |
龙滔, 覃连欢, 叶绍明. 基于BP神经网络连栽桉树人工林生长量预测[J]. 东北林业大学学报, 2012, 40(5):122−125. doi: 10.3969/j.issn.1000-5382.2012.05.030
Long T, Qin L H, Ye S M. Prediction for the growth of Eucalyptus plantations with continuous-planting rotations based on BP neural network[J]. Journal of Northeast Forestry University, 2012, 40(5): 122−125. doi: 10.3969/j.issn.1000-5382.2012.05.030
|
[77] |
Reis L P, de Souza A L, Mazzei L, et al. Prognosis on the diameter of individual trees on the eastern region of the amazon using artificial neural networks[J]. Forest Ecology and Management, 2016, 382: 161−167. doi: 10.1016/j.foreco.2016.10.022
|
[78] |
Vahedi A A. Artificial neural network application in comparison with modeling allometric equations for predicting above-ground biomass in the Hyrcanian mixed-beech forests of Iran[J]. Biomass and Bioenergy, 2016, 88: 66−76. doi: 10.1016/j.biombioe.2016.03.020
|
[79] |
Özçelık R, Diamantopoulou M J, Eker M, et al. Artificial neural network models: an alternative approach for reliable aboveground pine tree biomass prediction[J]. Forest Science, 2017, 63(3): 291−302. doi: 10.5849/FS-16-006
|
[80] |
Wu C Y, Chen Y F, Peng C H, et al. Modeling and estimating aboveground biomass of Dacrydium pierrei in China using machine learning with climate change[J]. Journal of Environmental Management, 2019, 234: 167−179.
|
[81] |
徐奇刚, 雷相东, 国红, 等. 基于多层感知机的长白落叶松人工林林分生物量模型[J]. 北京林业大学学报, 2019, 41(5):97−107.
Xu Q G, Lei X D, Guo H, et al. Stand biomass model of Larix olgensis plantations based on multi-layer perceptron networks[J]. Journal of Beijing Forestry University, 2019, 41(5): 97−107.
|
[82] |
Hlásny T, Trombik J, Bošeľa M, et al. Climatic drivers of forest productivity in Central Europe[J]. Agricultural and Forest Meteorology, 2017, 234−235: 258−273. doi: 10.1016/j.agrformet.2016.12.024
|
[83] |
Lima M B D O, Junior I M L, Oliveira E M, et al. Artificial neural networks in whole-stand level modeling of Eucalyptus plants[J]. African Journal of Agricultural Research, 2017, 12(7): 524−534. doi: 10.5897/AJAR2016.12068
|
[84] |
Yousefpoor M, Shahraji T R, Eslam B A, et al. The use of artificial neural network to evaluate the effects of human and physiographic factors on forest stock volume[J]. Journal of Applied Sciences and Environmental Management, 2016, 20(4): 1017−1024.
|
[85] |
林卓, 吴承祯, 洪伟, 等. 基于BP神经网络和支持向量机的杉木人工林收获模型研究[J]. 北京林业大学学报, 2015, 37(1):42−54.
Lin Z, Wu C Z, Hong W, et al. Yield model of Cunninghamia lanceolata plantation based on back propagation neural network and support vector machine[J]. Journal of Beijing Forestry University, 2015, 37(1): 42−54.
|
[86] |
Tavares J I D S, da Rocha J E C, Ebling  A, et al. Artificial neural networks and linear regression reduce sample intensity to predict the commercial volume of Eucalyptus Clones[J]. Forests, 2019, 10(3): 268. doi: 10.3390/f10030268
|
[87] |
刘鑫, 王海燕, 雷相东, 等. 基于BP神经网络的天然云冷杉针阔混交林标准树高−胸径模型[J]. 林业科学研究, 2017, 30(3):368−375.
Liu X, Wang H Y, Lei X D, et al. Generalized height-diameter model for natural mixed spruce-fir coniferous and broadleaf forests based on BP neural network[J]. Forest Research, 2017, 30(3): 368−375.
|
[88] |
Diamantopoulou M J, Özçelik R, Crecente-Campo F, et al. Estimation of Weibull function parameters for modelling tree diameter distribution using least squares and artificial neural networks methods[J]. Biosystems Engineering, 2015, 133: 33−45. doi: 10.1016/j.biosystemseng.2015.02.013
|
[89] |
薛薇. R语言数据挖掘方法及应用[M]. 北京: 电子工业出版社, 2016.
Xue W. Data Mining method with R language and its application[M]. Beijing: Publishing House of Electronics Industry, 2016.
|
[90] |
Che S H, Tan X H, Xiang C W, et al. Stand basal area modelling for Chinese fir plantations using an artificial neural network model[J]. Journal of Forestry Research, 2019, 30(5): 1641−1649. doi: 10.1007/s11676-018-0711-9
|
[91] |
Maltamo M, Kangas A. Methods based on k-nearest neighbor regression in the prediction of basal area diameter distribution[J]. Canadian Journal of Forest Research, 1998, 28(8): 1107−1115. doi: 10.1139/x98-085
|
[92] |
Lantz B. 机器学习与R语言[M]. 李洪成, 许金炜, 李舰, 译. 北京: 机械工业出版社, 2017.
Lantz B. Machine learning with R[M]. Li H C, Xu J W, Li J, trans. Beijing: China Machine Press, 2017.
|
[93] |
Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: data mining, inference and prediction[M]. 2nd ed. New York: Springer, 2009.
|
[94] |
Lantz B. Machine Learning with R[M]. Birmingham: Packt Publishing, 2013.
|
[95] |
Ridgeway G. Generalized boosted models: a guide to the GBM package[Z/OL]. [2019−10−13]. https://cran.r-project.org/web/packages/gbm/vignettes/gbm.pdf.
|
[96] |
Friedman J H. Stochastic gradient boosting[J]. Computational Statistics and Data Analysis, 2002, 38(4): 367−378. doi: 10.1016/S0167-9473(01)00065-2
|
[97] |
Thessen A E. Adoption of machine learning techniques in ecology and earth science[J/OL]. PeerJ PrePrints, 2016, 4: e1720v1 [2019−05−06]. https://peerj.com/preprints/1720.pdf.
|
[98] |
Fielding A H. Cluster and classification techniques for the biosciences[M]. London: Cambridge University Press, 2006.
|
[99] |
Corona-Núñez R O, Mendoza-Ponce A, López-Martínez R. Model selection changes the spatial heterogeneity and total potential carbon in a tropical dry forest[J]. Forest Ecology and Management, 2017, 405: 69−80. doi: 10.1016/j.foreco.2017.09.018
|
[100] |
Temesgen H, Ver Hoef J M. Evaluation of the spatial linear model, random forest and gradient nearest-neighbour methods for imputing potential productivity and biomass of the Pacific Northwest forests[J]. Forestry, 2015, 88(1): 131−142. doi: 10.1093/forestry/cpu036
|
[101] |
Jevšenak J, Levanič T. Should artificial neural networks replace linear models in tree ring based climate reconstructions?[J]. Dendrochronologia, 2016, 40: 102−109. doi: 10.1016/j.dendro.2016.08.002
|
[102] |
Görgens E B, Montaghi A, Rodriguez L C E. A performance comparison of machine learning methods to estimate the fast-growing forest plantation yield based on laser scanning metrics[J]. Computers and Electronics in Agriculture, 2015, 116: 221−227. doi: 10.1016/j.compag.2015.07.004
|
[103] |
Wang Y H, Raulier F, Ung C H. Evaluation of spatial predictions of site index obtained by parametric and nonparametric methods: a case study of lodgepole pine productivity[J]. Forest Ecology and Management, 2005, 214(1/3): 201−211.
|
[104] |
高若楠, 谢阳生, 雷相东, 等. 基于随机森林模型的天然林立地生产力预测研究[J]. 中南林业科技大学学报, 2019, 39(4):39−46.
Gao R N, Xie Y S, Lei X D, et al. Study on prediction of natural forest productivity based on random forest model[J]. Journal of Central South University of Forestry and Technology, 2019, 39(4): 39−46.
|
[105] |
Zhang H, Wang K L, Zeng Z X, et al. Large-scale patterns in forest growth rates are mainly driven by climatic variables and stand characteristics[J]. Forest Ecology and Management, 2019, 435: 120−127. doi: 10.1016/j.foreco.2018.12.054
|
[106] |
Guan H Y, Yu Y T, Ji Z, et al. Deep learning-based tree classification using mobile LiDAR data[J]. Remote Sensing Letters, 2015, 6(11): 864−873. doi: 10.1080/2150704X.2015.1088668
|
[107] |
Sun Y, Liu Y, Wang G, et al. Deep learning for plant identification in natural environment[J/OL]. Computational intelligence and neuroscience, 2017, 2017: Article ID 7361042 [2019−05−18]. https://www.hindawi.com/journals/cin/2017/7361042/.
|
[108] |
Pearline S A, Kumar V S, Harini S. A study on plant recognition using conventional image processing and deep learning approaches[J]. Journal of Intelligent and Fuzzy Systems, 2019, 36(3): 1997−2004. doi: 10.3233/JIFS-169911
|
[109] |
Wang G, Sun Y, Wang J X. Automatic image-based plant disease severity estimation using deep learning[J/OL]. Computational intelligence and neuroscience, 2017, 2017: Article ID 2917536 [2019−05−16]. https://www.hindawi.com/journals/cin/2017/2917536/.
|
[110] |
Asner G P, Brodrick P G, Philipson C, et al. Mapped aboveground carbon stocks to advance forest conservation and recovery in Malaysian Borneo[J]. Biological Conservation, 2018, 217: 289−310. doi: 10.1016/j.biocon.2017.10.020
|
1. |
沐钊颖,张兹鹏,张浩,姜立春. 应用机器学习算法模型预测兴安落叶松地上生物量. 东北林业大学学报. 2024(03): 41-47 .
![]() | |
2. |
崔中耀,赵凤君,赵爽,费腾,叶江霞. 基于多光谱无人机及机器学习的林木火灾受损信息提取研究. 自然灾害学报. 2024(01): 99-108 .
![]() | |
3. |
沈琛琛,肖文发,朱建华,曾立雄,陈吉臻,黄志霖. 基于机器学习算法的华中天然林土壤有机碳特征与关键影响因子. 林业科学. 2024(03): 65-77 .
![]() | |
4. |
王晓楠,苏文浩,董灵波. 基于随机森林的兴安落叶松天然林单木年龄预估模型. 应用生态学报. 2024(04): 1055-1063 .
![]() | |
5. |
黄宏超,庞丽峰,符利勇,卢军,雷渊才. 含竞争指标的广义可加混合效应树高-胸径模型. 东北林业大学学报. 2024(06): 70-78 .
![]() | |
6. |
甄诚,王海燕,雷相东,赵晗,董齐琪,崔雪,仇皓雷. 基于随机森林模型的旺业甸实验林场土壤全氮数字制图. 华中农业大学学报. 2024(03): 249-257 .
![]() | |
7. |
谭旺,刘义,董建华,杨阳,黄介生,敖畅,曾文治. 基于Sentinel-2卫星影像和土壤变量的盐渍化土壤水溶性盐基离子含量反演. 中国农村水利水电. 2024(07): 210-217+228 .
![]() | |
8. |
Junjie Lei,Changli Zeng,Lv Zhang,Xiaogang Wang,Chanhua Ma,Tao Zhou,Benjamin Laffitte,Ke Luo,Zhihan Yang,Xiaolu Tang. Prediction of soil organic carbon stock combining Sentinel-1 and Sentinel-2 images in the Zoige Plateau, the northeastern Qinghai-Tibet Plateau. Ecological Processes. 2024(02): 165-176 .
![]() |
|
9. |
姚建峰,吴振洋,胡雪凡,孙艳歌,田文静,路一曼,李晓. 多特征反向传播-人工神经网络微钻阻力年轮识别方法. 信阳师范学院学报(自然科学版). 2024(04): 460-469 .
![]() | |
10. |
王晓楠,苏文浩,董灵波. 应用特征选择和机器学习方法建立兴安落叶松单木树龄预测模型. 东北林业大学学报. 2024(11): 64-71+82 .
![]() | |
11. |
孙铭辰,姜立春. 基于机器学习算法的樟子松立木材积预测. 南京林业大学学报(自然科学版). 2023(01): 31-37 .
![]() | |
12. |
郭芮,伏帅,侯蒙京,刘洁,苗春丽,孟新月,冯琦胜,贺金生,钱大文,梁天刚. 基于Sentinel-2数据的青海门源县天然草地生物量遥感反演研究. 草业学报. 2023(04): 15-29 .
![]() | |
13. |
李洋,彭道黎,袁钰娜. 应用XGBoost算法对森林地上生物量的机载LiDAR反演. 东北林业大学学报. 2023(05): 106-112+129 .
![]() | |
14. |
雷媛媛,王新杰. 应用机器学习模型与线性模型预测森林蓄积生长量的精度. 东北林业大学学报. 2023(09): 72-75+82 .
![]() | |
15. |
朱兆廷,孙玉军,梁瑞婷,马佳欣,李佳怡. 基于树冠和竞争因子的杉木胸径估测. 北京林业大学学报. 2023(09): 42-51 .
![]() | |
16. |
徐奇刚,雷相东,郑宇,胡兴国,雷渊才,何潇. 基于Richards方程的冷杉树高曲线深度神经网络激活函数. 林业科学. 2023(10): 50-56 .
![]() | |
17. |
张雨田,许晓东,石军南,刘洋,蔡耀通,林辉,石灵杰,张怀清. 联合Sentinel-1和Sentinel-2数据反演森林蓄积量. 四川林业科技. 2022(02): 71-80 .
![]() | |
18. |
黄锦程,刘洪生,宁金魁,欧阳勋志,臧颢. 基于随机森林算法的江西省崇义县主要造林树种适生性研究. 林业资源管理. 2022(02): 117-125 .
![]() | |
19. |
张孟库,姜立春. 基于机器学习的落叶松树皮厚度预测. 北京林业大学学报. 2022(06): 54-62 .
![]() | |
20. |
Huiling Tian,Jianhua Zhu,Xiao He,Xinyun Chen,Zunji Jian,Chenyu Li,Qiangxin Ou,Qi Li,Guosheng Huang,Changfu Liu,Wenfa Xiao. Using machine learning algorithms to estimate stand volume growth of Larix and Quercus forests based on national-scale Forest Inventory data in China. Forest Ecosystems. 2022(03): 396-406 .
![]() |
|
21. |
肖舜祯,刘强,徐志扬,刘龙龙,朱海伦. 基于MLP的上海市主要树种单木胸径生长率模型. 江西农业大学学报. 2022(05): 1169-1176 .
![]() | |
22. |
卫安妮,赵宁,张志坚. 基于机器学习对串联排队系统等待时间的预测. 西南师范大学学报(自然科学版). 2022(12): 11-21 .
![]() | |
23. |
唐小平,欧阳君祥. 森林经营方案发展综述. 林业资源管理. 2022(S1): 8-18 .
![]() | |
24. |
赵颖慧,郭新龙,甄贞. 基于光学-ALS变量组合和非参数模型的天然次生林地上生物量估算. 南京林业大学学报(自然科学版). 2021(04): 49-57 .
![]() | |
25. |
刘建峰,倪健. 我国主要树种类型通用生物量相对生长方程的建模比较. 第四纪研究. 2021(04): 1169-1180 .
![]() | |
26. |
曹彦,游巍斌,王方怡,巫丽芸,何东进. 森林生态系统粗死木质残体碳储量研究进展. 生态学报. 2021(20): 7913-7927 .
![]() | |
27. |
瞿孝云,肖兴宁,肖英平,刘元杰,杨力,张建民,杨华,汪雯. 基于机器学习的肉鸡沙门氏菌污染风险敏感性分析. 农产品质量与安全. 2021(06): 41-46 .
![]() | |
28. |
梁瑞婷,周来,谢运鸿,丁志丹,孙玉军. 依据机器学习算法的杉木干形模拟. 东北林业大学学报. 2021(10): 21-26 .
![]() | |
29. |
梁瑞婷,孙玉军,李芸. 深度学习和传统方法模拟杉木树高-胸径模型比较. 林业科学研究. 2021(06): 65-72 .
![]() | |
30. |
臧颢,黄锦程,刘洪生,欧阳勋志,宁金魁. 基于增强回归树的杉木人工林林分断面积模型研究. 江西农业大学学报. 2020(03): 553-562 .
![]() |