• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Yan Yunfei, Wang Junjie, Jiang Lichun. Construction of the height to crown base mixed model for Korean pine[J]. Journal of Beijing Forestry University, 2020, 42(9): 28-36. DOI: 10.12171/j.1000-1522.20190366
Citation: Yan Yunfei, Wang Junjie, Jiang Lichun. Construction of the height to crown base mixed model for Korean pine[J]. Journal of Beijing Forestry University, 2020, 42(9): 28-36. DOI: 10.12171/j.1000-1522.20190366

Construction of the height to crown base mixed model for Korean pine

More Information
  • Received Date: September 19, 2019
  • Revised Date: December 18, 2019
  • Available Online: September 10, 2020
  • Published Date: September 29, 2020
  •   Objective  Based on the data of 2 972 Korean pine trees in 63 sample plots of Korean pine plantation in Maor Mountain of northeastern China, a nonlinear mixed model was used to construct the height to crown base model of Korean pine, which provided a theoretical basis for further research on growth and yield model.
      Method  Firstly, the optimal basic model was selected from eight commonly used models of height to crown base. Secondly, the influence of stand variables or individual tree variables on height to crown base was studied, and a generalized model was established. Finally, on the basis of the basic model and the generalized model, considering the effects of sample plot on the height to crown base of Korean pine, the basic mixed effect model and generalized mixed effect model of height to crown base for Korean pine were constructed. Four alternatives of height to crown base (HCB) sampling designs (the randomly selected trees and selecting the maximum, medium-size and minimum trees) and eight sample sizes (1−8 trees) were studied for sampling correction of basic mixed effect model and generalized mixed effect model respectively.
      Result  Logistic model had good fitting accuracy and biological significance, and its form was simple, so it was chosen as the the optimal basic model. In addition to tree height (H) and DBH, there was a significant correlation between the basal area sum larger than subject tree (BAL), dominant height (HD), crown width (CW) and HCB, and the fitting accuracy of the model was improved obviously. The fitting effect of height to crown base generalized mixed effect model was better than that of other models. The model validation showed that when the basic mixed effect model was used to predict, it was recommended to select four samples with the smallest DBH, and when the generalized mixed effect model was used to predict, it was recommended to randomly select four samples.
      Conclusion  The generalized mixed effect model is superior to the other three models in fitting effect and prediction accuracy. It is recommended that this model can be used as the height to crown base model for Korean pine. When applying generalized mixed effect model prediction, it is recommended that four samples can be randomly selected.
  • [1]
    Hasenauer H, Monserud R. A crown ratio model for Austrian forests[J]. Forest Ecology and Management, 1996, 84(1/3): 49−60.
    [2]
    Sharma R P, Bílek L, Vacek, Z, et al. Modelling crown width-diameter relationship for Scots pine in the central Europe[J]. Trees, 2017, 31(6): 1875−1889. doi: 10.1007/s00468-017-1593-8
    [3]
    Kuprevicius A, Auty D, Achim A, et al. Quantifying the influence of live crown ratio on the mechanical properties of clear wood[J]. Forestry: An International Journal of Forest Research, 2013, 86(3): 361−369. doi: 10.1093/forestry/cpt006
    [4]
    Monserud R A, Sterba H. A basal area increment model for individual trees growing in even- and uneven-aged forest stands in Austria[J]. Forest Ecology and Management, 1996, 80(1/3): 57−80.
    [5]
    吕乐, 董利虎, 李凤日. 黑龙江省东部地区天然椴树单木冠幅预测模型[J]. 东北林业大学学报, 2019, 47(7):37−42.

    Lü L, Dong L H, Li F R. Individual tree crown width prediction models for natural Tilia tuan in eastern Heilongjiang Province[J]. Journal of Northeast Forestry University, 2019, 47(7): 37−42.
    [6]
    Sharma R P, Vacek Z, Vacek S. Individual tree crown width models for Norway spruce and European beech in Czech Republic[J]. Forest Ecology and Management, 2016, 366: 208−220. doi: 10.1016/j.foreco.2016.01.040
    [7]
    Fu L Y, Sharma R P, Hao K J, et al. A generalized interregional nonlinear mixed-effects crown width model for Prince Rupprecht larch in northern China[J]. Forest Ecology and Management, 2017, 389: 364−373. doi: 10.1016/j.foreco.2016.12.034
    [8]
    Crecente-Campo F, Álvarez-González J G, Castedo-Dorado F, et al. Development of crown profile models for Pinus pinaster Ait. and Pinus sylvestris L. in northwestern Spain[J]. Forestry, 2013, 86(4): 481−491. doi: 10.1093/forestry/cpt019
    [9]
    Ritson P, Sochacki S. Measurement and prediction of biomass and carbon content of Pinus pinaster trees in farm forestry plantations, southwestern Australia[J]. Forest Ecology and Management, 2003, 175(1/3): 103−117.
    [10]
    Fu L Y, Zhang H R, Sharma R P, et al. A generalized nonlinear mixed-effects height to crown base model for Mongolian oak in northeast China[J]. Forest Ecology and Management, 2017, 384: 34−43. doi: 10.1016/j.foreco.2016.09.012
    [11]
    McRoberts R, Hahn J T, Hefty G J, et al. Variation in forest inventory field measurements[J]. Canadian Journal of Forest Research, 1994, 24(9): 1766−1770. doi: 10.1139/x94-228
    [12]
    Temesgen H, Lemay V, Mitchell S J. Tree crown ratio models for multi-species and multi-layered stands of southeastern British Columbia[J]. The Forestry Chronicle, 2005, 81(1): 133−141. doi: 10.5558/tfc81133-1
    [13]
    Ritchie M W, Hann D W. Equations for predicting height to crown base for fourteen tree species in southwest Oregon[R]. Corvallis: Oregon State University, 1987.
    [14]
    Rijal B, Weiskittel A R, Kershaw J A. Development of regional height to diameter equations for 15 tree species in the North American Acadian Region[J]. Forestry: An International Journal of Forest Research, 2012, 85(3): 379−390. doi: 10.1093/forestry/cps036
    [15]
    Yang Y Q, Huang S M. Effects of competition and climate variables on modelling height to live crown for three boreal tree species in Alberta, Canada[J]. European Journal of Forest Research, 2018, 137(2): 153−167. doi: 10.1007/s10342-017-1095-7
    [16]
    段光爽, 李学东, 冯岩, 等. 基于广义非线性混合效应的华北落叶松天然次生林枝下高模型[J]. 南京林业大学学报(自然科学版), 2018, 42(2):170−176.

    Duan G S, Li X D, Feng Y, et al. Generalized nonlinear mixed-effects crown base height model of Larix principis-rupprechtii natural secondary forests[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2018, 42(2): 170−176.
    [17]
    Sharma R P, Vacek Z, Vacek S, et al. Modelling individual tree height to crown base of Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica L.)[J]. PLoS ONE, 2017, 12(10): e0186394. doi: 10.1371/journal.pone.0186394
    [18]
    Calama R, Montero G. Interregional nonlinear height-diameter model with random coefficients for stone pine in Spain[J]. Canadian Journal of Forest Research, 2004, 34(1): 150−163. doi: 10.1139/x03-199
    [19]
    Yang Y Q, Huang S M, Meng S X, et al. A multilevel individual tree basal area increment model for aspen in boreal mixedwood stands[J]. Canadian Journal of Forest Research, 2009, 39(11): 2203−2214. doi: 10.1139/X09-123
    [20]
    Temesgen H, Monleon V J, Hann D W. Analysis and comparison of nonlinear tree height prediction strategies for Douglas-fir forests[J]. Canadian Journal of Forest Research, 2008, 38(3): 553−565. doi: 10.1139/X07-104
    [21]
    Crecente C F, Tomé M, Soares P, et al. A generalized nonlinear mixed-effects height-diameter model for Eucalyptus globulus L. in northwestern Spain[J]. Forest Ecology and Management, 2010, 259(5): 943−952. doi: 10.1016/j.foreco.2009.11.036
    [22]
    Sharma R P, Breidenbach J. Modeling height-diameter relationships for Norway spruce, Scots pine, and downy birch using Norwegian national forest inventory data[J]. Forest Science and Technology, 2015, 11(1): 44−53. doi: 10.1080/21580103.2014.957354
    [23]
    段光爽, 李学东, 冯岩, 等. 华北落叶松天然次生林树高曲线的混合效应模型[J]. 南京林业大学学报(自然科学版), 2018, 42(2):163−169.

    Duan G S, Li X D, Feng Y, et al. Developing a height-diameter relationship model with mixed random effects for Larix principis-rupprechtii natural secondary forests[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2018, 42(2): 163−169.
    [24]
    李婉婷, 姜立春, 万道印. 基于混合效应的兴安落叶松树高与胸径关系模拟[J]. 植物研究, 2014, 34(3):343−348.

    Li W T, Jiang L C, Wan D Y. Simulation of height-diameter relationships for Larix gmelinii based on mixed effects[J]. Bulletin of Botanical Research, 2014, 34(3): 343−348.
    [25]
    雷相东, 李永慈, 向玮. 基于混合模型的单木断面积生长模型[J]. 林业科学, 2009, 45(1):74−80.

    Lei X D, Li Y C, Xiang W. Individual basal area growth model using multi-level linear mixed model with repeated measures[J]. Scientia Silvae Sinicae, 2009, 45(1): 74−80.
    [26]
    李春明. 基于两层次线性混合效应模型的杉木林单木胸径生长量模型[J]. 林业科学, 2012, 48(3):66−73.

    Li C M. Individual tree diameter increment model for Chinese fir plantation based on two-level linear mixed effects models[J]. Scientia Silvae Sinicae, 2012, 48(3): 66−73.
    [27]
    Calama R, Montero G. Multilevel linear mixed model for tree diameter increment in stone pine (Pinus pinea): a calibrating approach[J]. Sliva Fennica, 2005, 39(1): 394.
    [28]
    李想, 董利虎, 李凤日. 基于联立方程组的人工樟子松枝下高模型构建[J]. 北京林业大学学报, 2018, 40(6):9−18.

    Li X, Dong L H, Li F R. Building height to crown base models for Mongolian pine plantation based on simultaneous equations in Heilongjiang Province of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(6): 9−18.
    [29]
    Wykoff W R, Crookston N L, Stage A R. User’s guide to the stand prognosis model[R].Ogden: Forest Service, United States Department of Agriculture, 1982.
    [30]
    Popoola F S, Adesoye P O. Crown ratio models for Tectona grandis (Linn. f) stands in Osho Forest Reserve, Oyo State, Nigeria[J]. Journal of Forest & Environmental Science, 2012, 28(2): 63−67.
    [31]
    Walters D K, Hann D W. Taper equations for six conifer species in southwest Oregon[M]. Corvallis: Oregon State University, 1986..
    [32]
    韩斐斐, 姜立春. 基于树干不同高度直径的落叶松立木材积方程[J]. 东北林业大学学报, 2017, 45(4):65−69.

    Han F F, Jiang L C. Tree volume function based on diameter at different relative heights of Dahurian larch[J]. Journal of Northeast Forestry University, 2017, 45(4): 65−69.
  • Cited by

    Periodical cited type(8)

    1. 程雯,武晓昱,叶尔江·拜克吐尔汉,王娟,赵秀海,张春雨. 基于混合效应和分位数回归的温带针阔混交林树高与胸径关系研究. 北京林业大学学报. 2024(02): 28-39 . 本站查看
    2. 钟思琪,宁金魁,黄锦程,陈鼎泸,欧阳勋志,臧颢. 基于混合效应的杉木人工林冠幅模型. 森林与环境学报. 2024(02): 127-135 .
    3. 于渤,王明霞,崔晨曦,尹赛男,单延龙,韩喜越. 我国北方森林地下火燃烧温度预测. 北华大学学报(自然科学版). 2023(02): 244-251 .
    4. 易达,李凤日,马爱云,林富成,郝元朔,董利虎. 基于混合效应模型和分位数回归的长白落叶松枝下高模型构建. 应用生态学报. 2023(04): 1035-1042 .
    5. 崔泽宇,张怀清,左袁青,杨廷栋,刘洋,张京,王林龙. 杉木三维模型各方向枝下高分布研究. 南京林业大学学报(自然科学版). 2022(01): 81-87 .
    6. 李应涛,刘时良,孙海龙,王卫霞,向玮. 云冷杉针阔混交林单木枝下高和冠幅模型构建. 森林与环境学报. 2022(03): 289-296 .
    7. 韩东阳,张加龙,杨健,王书贤,冯亚飞. 考虑地形效应的高山松地上生物量遥感估测模型构建. 中南林业科技大学学报. 2022(04): 12-21+67 .
    8. 肖伟伟,李海瑜,杨振景,王珂,尹昀洲,王树力. 水曲柳人工林树冠形态与林木生长形质的关系及其对修枝的响应. 中南林业科技大学学报. 2022(09): 47-54+158 .

    Other cited types(15)

Catalog

    Article views (2099) PDF downloads (72) Cited by(23)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return