Advanced search
    Zhan Hang, Niu Shukui, Wang Bo. Prediction models and changing rules of dead fuel moisture content of 8 forest species in Beijing area[J]. Journal of Beijing Forestry University, 2020, 42(6): 80-90. DOI: 10.12171/j.1000-1522.20190370
    Citation: Zhan Hang, Niu Shukui, Wang Bo. Prediction models and changing rules of dead fuel moisture content of 8 forest species in Beijing area[J]. Journal of Beijing Forestry University, 2020, 42(6): 80-90. DOI: 10.12171/j.1000-1522.20190370

    Prediction models and changing rules of dead fuel moisture content of 8 forest species in Beijing area

    More Information
    • Received Date: October 23, 2019
    • Revised Date: January 09, 2020
    • Available Online: May 17, 2020
    • Published Date: June 30, 2020
    • ObjectiveThe forest fuel moisture content has great impact on the occurrence and spread of forest fire, particularly important on the fire behavior, and its prediction forecast models have significant effects on predicting forest fire and forest fire behavior.
      MethodThrough the continuous determination of dead fuel moisture content of 8 kinds of forest trees in Beijing area during the period of fire prevention, we researched the relationship between fuel moisture content and the current and previous meteorological data, and established the prediction models by selecting the meteorological factors, which has great influence on the fuel moisture content. On this basis, we quantitatively analyzed the diurnal variation and fire protection period variation of the fuel moisture content.
      ResultThe fuel moisture content of different tree species was significantly different, from descending order was Quercus variabilis, Q. aliena, Ulmus pumila, Robinia pseudoacacia, Acer truncatum, Platycladus orientalis, Pinus tabuliformis, Larix principis-rupprechtii. And the fuel moisture content of different types was also significantly different. Generally the broadleaf tree’s fuel moisture content was higher than that of coniferous trees, and the fuel moisture content of dead leaves and 1 hr dead branches were higher than 10 hr and 100 hr. That of 1 hr of dead branches was mainly affected by the current meteorological factors, while that of 10 hr and 100 hr of dead branches were affected by the early meteorological factors. The test indexes of 32 linear prediction models showed that the fitting effect was perfect. The diurnal variation of the fuel moisture content was higher and more stable at night, lower and varied greatly during the day, which peaked at 06:00−08:00, then dropped sharply, and later reached the lowest value at about 12:00−14:00. During the fire protection period, the fuel moisture content showed a trend of rising first, then decreasing. It was low in November but increased slowly and reached a high level from December to January of the following year. From early March to the end of April, the fuel moisture content kept a very low level.
      ConclusionHigh-precision prediction methods of different tree species and among different fuel types could offer theoretical support for forest fire prevention, which can be used in practice. In March and at noon time in Beijing, it,s windy, drying and hot and the fuel moisture content is low, so the fire management should be reinforced in such a fire danger period.
    • [1]
      赵凤君, 王明玉, 舒立福. 森林火灾中的树冠火研究[J]. 世界林业研究, 2010, 23(1):39−43.

      Zhao F J, Wang M Y, Shu L F. Areview of crown fire research[J]. World Forestry Research, 2010, 23(1): 39−43.
      [2]
      胡海清, 牛树奎, 金森, 等. 林火生态与管理[M]. 北京: 中国林业出版社, 2005: 31−37.

      Hu H Q, Niu S K, Jin S, et al. Fire ecology and management[M]. Beijing: China Forestry Publishing House, 2005: 31−37.
      [3]
      周涧青. 大兴安岭南部主要森林类型可燃物负荷量及其潜在地表火行为研究[D]. 北京: 北京林业大学, 2014.

      Zhou J Q. Research on forest fuel loadings and potential surface fire behavior of major forest types in southern Daxing’an Mountains[D]. Beijing: Beijing Forestry University, 2014.
      [4]
      Mitsopoulos I D, Dimitrakopoulos A P. Canopy fuel characteristics and potential crown fire behavior in Aleppo pine(Pinus halepensis Mill) forests[J]. Annals of Forest Science, 2007, 64(3): 287−299. doi: 10.1051/forest:2007006
      [5]
      Kreye J K, Kobziar L N, Zipperer W C. Effects of fuel load and moisture content on fire behaviour and heating in masticated litter-dominated fuels[J]. International Journal of Wildland Fire, 2013, 22(4): 440−445. doi: 10.1071/WF12147
      [6]
      牛树奎, 王叁, 贺庆棠, 等. 北京山区主要针叶林可燃物空间连续性研究: 可燃物垂直连续性与树冠火发生[J]. 北京林业大学学报, 2012, 34(3):1−7.

      Niu S K, Wang S, He Q T, et al. Spatial continuity of fuels in major coniferous forests in Beijing mountainous area: fuel vertical continuity and crown fire occurrence[J]. Journal of Beijing Forestry University, 2012, 34(3): 1−7.
      [7]
      王舜娆, 金森. 基于热重分析的南昌地区8种可燃物的热解动力学及燃烧性排序[J]. 中南林业科技大学学报, 2015, 35(11):94−98.

      Wang S R, Jin S. Study on pyrolysis kinetics and combustibility ordering of 8 kinds of fuels in Nanchang area based on thermogravimetric analysis[J]. Journal of Central South University of Forestry & Technology, 2015, 35(11): 94−98.
      [8]
      王明玉, 舒立福, 姚树人. 北京地区森林可燃物人工调控技术[J]. 森林防火, 2012, 9(3):46−48. doi: 10.3969/j.issn.1002-2511.2012.03.019

      Wang M Y, Shu L F, Yao S R. Artificial control technology of forest fuel in Beijing area[J]. Forest Fire Prevention, 2012, 9(3): 46−48. doi: 10.3969/j.issn.1002-2511.2012.03.019
      [9]
      Matthews S. A process-based model of fine fuel moisture[J]. International Journal of Wild land Fire, 2006, 15: 155−168. doi: 10.1071/WF05063
      [10]
      屈宇, 于汝元, 张延达, 等. 营林防火的理论与实践[J]. 林业资源管理, 2002(4):13−16. doi: 10.3969/j.issn.1002-6622.2002.04.004

      Qu Y, Yu R Y, Zang Y D, et al. Theory and practice on forest fire prevention by means of tending[J]. Forest Resources Management, 2002(4): 13−16. doi: 10.3969/j.issn.1002-6622.2002.04.004
      [11]
      魏云敏, 鞠琳. 森林可燃物载量研究综述[J]. 森林防火, 2006(4):18−21. doi: 10.3969/j.issn.1002-2511.2006.04.008

      Wei Y M, Ju L. Summary of the study on forest fuel load[J]. Forest Fire Prevention, 2006(4): 18−21. doi: 10.3969/j.issn.1002-2511.2006.04.008
      [12]
      Viegas D X, Pinol J, Viegas M T. Estimating live fine fuels moisture content using meteorologically-based indices[J]. International Journal of Wildland Fire, 2001, 10(2): 223−240. doi: 10.1071/WF01022
      [13]
      Nelson Jr., R M. A method for describing equilibrium moisture content of forest fuels[J]. Canadian Journal of Forest Research, 1984, 14(4): 597−600. doi: 10.1139/x84-108
      [14]
      Wotton B M, Beverly J L. Stand-specific litter moisture content calibrations for the Canadian Fine Fuel moisture code[J]. International Journal of Wildland Fire, 2007, 16(4): 463−472.
      [15]
      Simard A J. The moisture content of forest fuels (1): a review of the basic concepts [M]. Toronto: Canadian Development Forest Fire Research Institute, 1968.
      [16]
      Catchpole E A, Catchpole W R, Viney N R, et al. Estimating fuel response time and predicting fuel moisture content from field data[J]. International Journal of Wildland Fire, 2001, 10(2): 215−222. doi: 10.1071/WF01011
      [17]
      Slijepcevic A, Anderson W R, Matthews S. Testing existing models for predicting hourly variation in fine fuel moisture in eucalypt forests[J]. Forest Ecology and Management, 2013, 306: 202−215. doi: 10.1016/j.foreco.2013.06.033
      [18]
      高开通, 刘鹏举, 唐小明. 森林资源小班火险天气等级预报方法研究[J]. 北京林业大学学报, 2013, 35(4):61−66.

      Gao K T, Liu P J, Tang X M. Forecasting forest fire risk grade of forest subcompartment[J]. Journal of Beijing Forestry University, 2013, 35(4): 61−66.
      [19]
      张恒, 金森, 邸雪颖. 基于FWI湿度码的塔河林业局地表凋落物含水率预测[J]. 应用生态学报, 2014, 25(7):2049−2055.

      Zhang H, Jin S, Di X Y. Prediction of litter moisture content in Tahe Forestry Bureau of Northeast China based on FWI moisture codes[J]. Chinese Journal of Applied Ecology, 2014, 25(7): 2049−2055.
      [20]
      宋雨, 胡海清, 孙龙, 等. 大兴安岭不同坡位地表可燃物含水率的动态变化与建模[J]. 森林工程, 2017, 33(5):1−7.

      Song Y, Hu H Q, Sun L, et al. Dynamic change and modeling of moisture content of surface fuel in different slope positions of Daxing’anling[J]. Forest Engineering, 2017, 33(5): 1−7.
      [21]
      李海洋, 胡海清, 孙龙. 我国森林死可燃物含水率与气象和土壤因子关系模型研究[J]. 森林工程, 2016, 32(3):1−6. doi: 10.3969/j.issn.1001-005X.2016.03.001

      Li H Y, Hu H Q, Sun L. Research on relational models of moisture content of dead forest fuel with meteorological factors and soil factors in China[J]. Forest Engineering, 2016, 32(3): 1−6. doi: 10.3969/j.issn.1001-005X.2016.03.001
      [22]
      张运林, 孙萍, 胡海清, 等. 风速对蒙古栎阔叶床层两个重要失水时间的影响[J]. 中南林业科技大学学报, 2018, 38(4):65−71.

      Zang Y L, Sun P, Hu H Q, et al. Effects of wind speed on two key drying times of fuelbeds composed of Mongolian oak leaves[J]. Journal of Central South University of Forestry & Technology, 2018, 38(4): 65−71.
      [23]
      胡海清, 罗碧珍, 罗斯生, 等. 大兴安岭典型林型地表可燃物含水率预测模型[J]. 中南林业科技大学学报, 2018, 38(11):1−9.

      Hu H Q, Luo B Z, Luo S S, et al. The prediction of moisture content of surface ground fuel of typical forest stand in Daxing’anling Mountains[J]. Journal of Central South University of Forestry & Technology, 2018, 38(11): 1−9.
      [24]
      尹坤. 基于Logistic曲线的森林可燃物含水率模型[D]. 哈尔滨: 东北林业大学, 2015.

      Yin K. The model of forest fuel moisture with Logistic curve[D]. Harbin: Northeast Forestry University, 2015.
      [25]
      邵潇, 牛树奎, 张晨, 等. 北京地区森林枯死可燃物含水率预测模型及变化规律[J]. 广东农业科学, 2015, 42(17):37−46. doi: 10.3969/j.issn.1004-874X.2015.17.007

      Shao X, Niu S K, Zhang C, et al. Prediction model and change regularity of moisture of forest surface dead fuel in Beijing[J]. Guangdong Agricultural Sciences, 2015, 42(17): 37−46. doi: 10.3969/j.issn.1004-874X.2015.17.007
      [26]
      林文琪. 北京的珍贵自然遗产: 植物多样性[J]. 生态学报, 2006, 26(4):969−979. doi: 10.3321/j.issn:1000-0933.2006.04.001

      Lin W Q. Precious natural heritage of Beijing: plant diversity[J]. Acta Ecologica Sinica, 2006, 26(4): 969−979. doi: 10.3321/j.issn:1000-0933.2006.04.001
      [27]
      李连强, 牛树奎, 陈锋, 等. 北京妙峰山林场地表潜在火行为及燃烧性分析[J]. 北京林业大学学报, 2019, 41(3):58−67.

      Li L Q, Niu S K, Chen F, et al. Analysis on surface potential fire behavior and combustion of Miaofeng Mountain Forest Farm in Beijing[J]. Journal of Beijing Forestry University, 2019, 41(3): 58−67.
      [28]
      陶长森, 牛树奎, 陈羚, 等. 妙峰山林场主要针叶林冠层特征及潜在火行为[J]. 北京林业大学学报, 2018, 40(5):82−89.

      Tao C S, Niu S K, Chen L, et al. Canopy characteristics and potential crown fire behavior of main coniferous forest in Miaofeng Mountain Forest Farm in Beijing[J]. Journal of Beijing Forestry University, 2018, 40(5): 82−89.
      [29]
      涂志华, 北京山区森林土壤碳−氮−水耦合循环机制研究[D]. 北京: 北京林业大学, 2015.

      Tu Z H. Mechanism study on the coupling cycle of soil carbon-nitrogen-waterof forest ecosystems in Beijing mountainous area[D]. Beijing: Beijing Forestry University, 2015.
      [30]
      Jolly W M, Hadlow A M. A comparison of two methods for estimating conifer live foliar moisture content[J]. International Journal of Wildland Fire, 2011, 21(2): 180−185.
    • Related Articles

      [1]Li Jiaqi, Xu Guoqi, Qin Shaoshan. Preparation of nano-SiO2-IPBC microcapsule and its application in mildew resistance of Hevea brasiliensis[J]. Journal of Beijing Forestry University, 2022, 44(11): 122-131. DOI: 10.12171/j.1000-1522.20220229
      [2]Zhao Pengwei, Xu Guoqi, Yang Hong. Research on the performance of poplar wood treated by nano-CuO/silica sol formulations[J]. Journal of Beijing Forestry University, 2021, 43(11): 109-117. DOI: 10.12171/j.1000-1522.20210299
      [3]LI Jin-ke, DENG Wen-hong, CHEN Shao-liang. Quantitative analysis of gibberellins in plant tissues by GPC-HPLC-LC/MS.[J]. Journal of Beijing Forestry University, 2014, 36(6): 171-178. DOI: 10.13332/j.cnki.jbfu.2014.06.027
      [4]LI Jin-ke, DENG Wen-hong, CHEN Shao-liang. Gel permeation chromatography (GPC)high performance liquid chromatographic (HPLC) determination of cytokinin in plant tissues.[J]. Journal of Beijing Forestry University, 2012, 34(6): 155-159.
      [5]NIAN Hong-li, LI He, CAO Dong-dong, CAO Jian-kang, JIANG Wei-bo. Determination of phenolic compounds in jujube peels at different maturity stages by high performance liquid chromatography.[J]. Journal of Beijing Forestry University, 2011, 33(1): 139-143.
      [6]LIANG Xin-hua, ZHENG Cai-xia, ZHANG Feng-xia, LI Peng. Extraction and HPLC analysis of squalene in Glycyrrhiza uralensis Fisch[J]. Journal of Beijing Forestry University, 2010, 32(2): 123-126.
      [7]YU Li-li, GAO Wei, CAO Jin-zhen, TANG Zhen-zhong.. Effects of microwave posttreatments on the leaching resistance of ACQ-D treated Chinese fir.[J]. Journal of Beijing Forestry University, 2009, 31(6): 90-96.
      [8]YU Liping, CAO Jin-zhen, YAN Li. Improvement on the leaching resistance of boron based wood preservative by metallic salts[J]. Journal of Beijing Forestry University, 2009, 31(6): 86-89.
      [9]YU Li-li, GUO Ning, CAO Jin-zhen. Effects of circulation condition on copper leaching resistance in ACQ-D treated Chinese fir.[J]. Journal of Beijing Forestry University, 2008, 30(5): 123-128.
      [10]TAO Xia-juan, ZHAO Yan-ling, CHEN Xue-mei, WANG Tian-hua, JIANG Xiang-ning. HPLC analysis of metabolites in the biosynthetic pathway of tabacco lignin[J]. Journal of Beijing Forestry University, 2005, 27(5): 111-114.

    Catalog

      Article views (3146) PDF downloads (95) Cited by()

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return