• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhao Pengwei, Xu Guoqi, Yang Hong. Research on the performance of poplar wood treated by nano-CuO/silica sol formulations[J]. Journal of Beijing Forestry University, 2021, 43(11): 109-117. DOI: 10.12171/j.1000-1522.20210299
Citation: Zhao Pengwei, Xu Guoqi, Yang Hong. Research on the performance of poplar wood treated by nano-CuO/silica sol formulations[J]. Journal of Beijing Forestry University, 2021, 43(11): 109-117. DOI: 10.12171/j.1000-1522.20210299

Research on the performance of poplar wood treated by nano-CuO/silica sol formulations

More Information
  • Received Date: August 06, 2021
  • Revised Date: October 08, 2021
  • Available Online: October 10, 2021
  • Published Date: November 29, 2021
  •   Objective  The objective of this study is to investigate the effects of different post-treatment methods on the decay resistance of nano wood preservative impregnated wood, the compression parallel to grain and the leaching resistance of copper ions, aiming to provide the basis for the application of nano-preservatives.
      Method  The nano-CuO/silica sol formulations were prepared by mechanical co-blending, combined with ICP-OES and SEM to investigate the changes of different post-treatment methods(steaming at 100 ℃ and freezing at −30 ℃)on the decay resistance of impregnated wood, compression parallel to grain, impregnated wood preservative distribution and copper ion leaching resistance.
      Result  The decay resistance of the specimens impregnated with nano-CuO/silica sol formulations was significantly improved, reaching the standard of “very durable”. The compression parallel to grain increased by 24.42% compared with the untreated material. Compared with the impregnated specimens, the extended steaming post-treatment time resulted in a more uniform and dense distribution of the formulations in the treated material, while the freezing post-treatment resulted in a granular distribution of the formulations. The mass loss of impregnated material after steaming post-treatment for 90 min and freezing post-treatment for 8h was reduced by 18.30% and 24.37%, respectively compared with the impregnated material. Steaming post-treatment for a shorter period of time can improve the leaching resistance of copper ions in impregnated materials, while the leaching resistance of copper ions in impregnated materials after different time of freezing post-treatment was better than that of impregnated materials, and the leaching of copper ions was reduced by 8.72%−34.40%. Compression parallel to grain of steaming post-treated impregnated material was higher than that of normal impregnated specimens, with an increase of 0.64%−5.31%, while the compressive strength of freezing post-treated impregnated material was slightly lower than that of impregnated material.
      Conclusion  Steaming post-treatment was found to be very effective in improving the compression parallel to grain of the impregnated materials with nano-CuO/silica sol preservatives, while freezing post-treatment was more effective in improving the leaching resistance of copper ions. The experimental results provide a reference for the application of different treatments in the selection of nanopreservatives.
  • [1]
    Gérardin P. New alternatives for wood preservation based on thermal and chemical modification of wood: a review[J]. Annals of Forest Science, 2016, 73(3): 559−570. doi: 10.1007/s13595-015-0531-4
    [2]
    郭梦麟, 蓝浩繁, 邱坚. 木材腐朽与维护[M]. 北京: 中国计量出版社, 2010: 25−29.

    Guo M L, Lan H F, Qiu J. Wood deterioration and preservation [M]. Beijing: China Metrology Press, 2010: 25−29.
    [3]
    Goffredo G B, Accoroni S, Totti C, et al. Titanium dioxide based nanotreatments to inhibit microalgal fouling on building stone surfaces[J]. Building and Environment, 2017, 112: 209−222. doi: 10.1016/j.buildenv.2016.11.034
    [4]
    Moya R, Rodriguez-Zuñiga A, Berrocal A, et al. Effect of silver nanoparticles synthesized with NPs Ag-ethylene glycol (C2H6O2) on brown decay and white decay fungi of nine tropical woods[J]. Journal of Nanoscience and Nanotechnology, 2017, 17(8): 5233−5240. doi: 10.1166/jnn.2017.13814
    [5]
    de Filpo G, Palermo A M, Rachiele F, et al. Preventing fungal growth in wood by titanium dioxide nanoparticles[J]. International Biodeterioration & Biodegradation, 2013, 85: 217−222.
    [6]
    Civardi C, Schwarze F W M R, Wick P. Micronized copper wood preservatives: an efficiency and potential health risk assessment for copper-based nanoparticles[J]. Environmental Pollution, 2015, 200: 126−132. doi: 10.1016/j.envpol.2015.02.018
    [7]
    Xu G, Cappellazzi J, Konkler M J, et al. Effect of multiple leaching cycles on decay resistance of micronized copper azole-treated southern pine sapwood[J]. Forest Products Journal, 2020, 70(2): 178−181. doi: 10.13073/FPJ-D-19-00065
    [8]
    Matsunaga H, Kiguchi M, Evans P D. Microdistribution of copper-carbonate and iron oxide nanoparticles in treated wood[J]. Journal of Nanoparticle Research, 2009, 11(5): 1087−1098. doi: 10.1007/s11051-008-9512-y
    [9]
    Stirling R, Drummond J. Re-distribution of copper in the cell walls of wood treated with micronized copper quat[C]//The 40th Annual Meeting of the International Research Group on Wood Protection. Stockhom: IRG Secretariat, 2009.
    [10]
    杨守禄, 姬宁, 黄安香, 等. 一种木材防腐剂的制备方法: CN108189181A[P]. 2018−06−22.

    Yang S L, Ji N, Huang A X, et al. A preparation method of wood preservative: CN108189181A[P]. 2018−06−22.
    [11]
    中华人民共和国国家林业局. 木材防腐剂对腐朽菌毒性实验室试验方法: LY/T 1283—2011[S]. 北京: 中国标准出版社, 2011.

    National Forestry Administration of the People’s Republic of China. Method of laboratory test for toxicity of wood preservatives to decay fungi: LY/T 1283−2011[S]. Beijing: Standards Press of China, 2011.
    [12]
    中国人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 木材pH值测定方法: GB/T 6043—2009 [S]. 北京: 中国标准出版社, 2009.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Method for determination of pH value of wood: GB/T 6043−2009 [S]. Beijing: Standards Press of China, 2009.
    [13]
    中国人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 木材含水率测定方法: GB/T 1931—2009 [S]. 北京: 中国标准出版社, 2009.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Method for determination of the moisture content of wood: GB/T 1931−2009 [S]. Beijing: Standards Press of China, 2009.
    [14]
    中国人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 木材防腐剂流失率试验方法: GB/T 29905—2013[S]. 北京: 中国标准出版社, 2013.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Laboratory method of determining the leachability of wood preservatives: GB/T 29905−2013[S]. Beijing: Standards Press of China, 2013.
    [15]
    许民, 李凤竹, 王佳贺, 等. CuO-ZnO纳米复合防腐剂对杨木抑菌性能的影响[J]. 西南林业大学学报(自然科学), 2014, 34(1):87−92.

    Xu M, Li F Z, Wang J H, et al. Study on antibacterial properties of poplar wood treated with CuO-ZnO nanocomposite preservative[J]. Journal of Southwest Forestry University (Natural Sciences), 2014, 34(1): 87−92.
    [16]
    中国人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 木材顺纹抗压强度试验方法: GB/T 1935—2009 [S]. 北京: 中国标准出版社, 2009.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Method of testing in compressive strength parallel to grain of wood: GB/T 1935−2009 [S]. Beijing: Standards Press of China, 2009.
    [17]
    陈太安, 顾炼百, 孙照斌. 汽蒸处理对青冈栎干缩系数及气体渗透性的影响[J]. 南京林业大学学报(自然科学版), 2003, 27(2):62−64. doi: 10.3969/j.issn.1000-2006.2003.02.015

    Chen T A, Gu L B, Sun Z B. The effects of steaming on the shrinkage coefficient and air permeability of oak[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2003, 27(2): 62−64. doi: 10.3969/j.issn.1000-2006.2003.02.015
    [18]
    Xu E, Zhang Y, Lin L. Improvement of mechanical, hydrophobicity and thermal properties of Chinese fir wood by impregnation of nano silica sol[J]. Polymers, 2020, 12(8): 1632. doi: 10.3390/polym12081632
    [19]
    Awoyemi L, Femi-Ola T O, Aderibigbe E Y. Pre-freezing as a pre-treatment for thermal modification of wood. Part 2: surface properties and termite resistance[J]. Journal of the Indian Academy of Wood Science, 2010, 7(1): 19−24.
    [20]
    Awoyemi L. Influence of prefreezing on the fibre saturation point, sorption and swelling properties of birch (Betula pubescens) wood[J]. Journal of the Institute of Wood Science, 2006, 17(4): 225−227. doi: 10.1179/wsc.2006.17.4.225
    [21]
    Chafe S C. Effect of brief presteaming on shrinkage, collapse and other wood-water relationships in Eucalyptus regnans F. Muell[J]. Wood Science and Technology, 1990, 24(4): 311−326.
    [22]
    Chafe S C. The effect of boiling on shrinkage, collapse and other wood-water properties in core segments of Eucalyptus regnans F. Muell[J]. Wood Science and Technology, 1992, 27(3): 205−217.
    [23]
    Kookandeh M G, Taghiyari H R, Siahposht H. Effects of heat treatment and impregnation with zinc-oxide nanoparticles on physical, mechanical, and biological properties of beech wood[J]. Wood Science and Technology, 2014, 48(4): 727−736. doi: 10.1007/s00226-014-0627-2
    [24]
    Taghiyari H R. Study on the effect of nano-silver impregnation on mechanical properties of heat-treated Populus nigra[J]. Wood Science and Technology, 2011, 45(2): 399−404. doi: 10.1007/s00226-010-0343-5
    [25]
    Zhang J, Kamdem D P. Interaction of copper-amine with southern pine: retention and migration[J]. Wood and Fiber Science, 2000, 32(3): 332−339.
    [26]
    Guo A, Cooper P A, Ung T. Fixation and leaching characteristics of acid copper chromate (ACC) compared to other chromium-based wood preservatives[J]. Forest Products Journal, 2005, 5(7/8): 72−75.
    [27]
    Tascioglu C, Cooper P A, Ung T. Rate and extent of adsorption of ACQ preservative components in wood[J]. Holzforschung, 2005, 59: 574−580. doi: 10.1515/HF.2005.094
    [28]
    于丽丽. 后处理对ACQ-D处理材流失性影响及固着机理研究[D]. 北京: 北京林业大学, 2010.

    Yu L L. Effects of post-treatments on leaching and fixation mechanism of ACQ-D treated wood[D]. Beijing: Beijing Forestry University, 2010.
    [29]
    马世春. 汽蒸处理改善木材尺寸稳定性初探[J]. 木材工业, 1998(5):35−36, 38.

    Ma S C. Study on improving dimensional stability of wood after saturated steam treatment[J]. Chinese Journal of Wood Science and Technology, 1998(5): 35−36, 38.
    [30]
    Szmutku M B, Campean M, Porojan M. Strength reduction of spruce wood through slow freezing[J]. European Journal of Wood and Wood Products, 2013, 71(2): 205−210. doi: 10.1007/s00107-013-0667-6
  • Related Articles

    [1]Sun Ruilin, Wang Cheng, Han Wenjing, Bian Qi, Zhang Shujing. Estimates of optimal times for human exposure to sunlight UV radiation in tree shade[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20240108
    [2]Sun Yingchun, Liu Ru, Long Ling, Chen Minggui. Low gloss and anti-fingerprint properties of self-wrinkling UV cured polyurethane acrylate wood coatings[J]. Journal of Beijing Forestry University, 2024, 46(4): 149-157. DOI: 10.12171/j.1000-1522.20230351
    [3]Li Wanzhao, Zhang Zheng, Peng Junyi, Wang Xinzhou, Shi Jiangtao, Mei Changtong. Exploring the internal deformation of wood under loading based on X-ray CT[J]. Journal of Beijing Forestry University, 2021, 43(2): 160-164. DOI: 10.12171/j.1000-1522.20200290
    [4]Li Jinyu, Gao Yuan, Zhang Qin, Liu Xiaomin, Gao Hongbo. Genetic identification and analysis of chloroplast division mutants x17-3 and pd50 in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2018, 40(4): 86-95. DOI: 10.13332/j.1000-1522.20170433
    [5]Zhang Yu-hong, Cheng Kai-shan, Gao Xin, Zhang Xi-guo, Liu Tong. Influence on antioxidants and alkaloid content of Phellodendron amurense seedlings grown under supplementary UV-B radiation[J]. Journal of Beijing Forestry University, 2018, 40(1): 27-36. DOI: 10.13332/j.1000-1522.20170201
    [6]KOU Xin-yue, WANG Yu-jie, ZHANG Xiao-ming, WANG Yun-qi, ZHAO Yang, CHENG Chen. Runoff-sediment relationship and driving force of typical watershed in the third sub-region of hilly loess area, northwestern China[J]. Journal of Beijing Forestry University, 2015, 37(7): 85-93. DOI: 10.13332/j.1000-1522.20140375
    [7]DING Xiao-liu, LIU Jia, ZHAO Hong-xia, WANG Jing, LUO Le, PAN Hui-tang, ZHANG Qi-xiang. Hybrid identification and morphological evaluation of modern roses ( Rosa hybrida ) x Rosa rugosa[J]. Journal of Beijing Forestry University, 2014, 36(5): 123-130. DOI: 10.13332/j.cnki.jbfu.2014.05.005
    [8]GUO Jun-e, LI Tian, SUN Xian-zhi, SUN Xia, ZHENG Cheng-shu. Spermidine participation in the regulation of floral bud differentiation in chrysanthemum (Chrysanthemum x morifolium)[J]. Journal of Beijing Forestry University, 2014, 36(4): 88-93. DOI: 10.13332/j.cnki.jbfu.2014.04.017
    [9]TANG Hui, KONG De-xin, LIANG Hui-ling, WANG Man-lian, SHI Yan-cai, WEI Ji-qing.. Rapid assessment of infrared spectroscopy and chemometrics of Illicium difengpi from different regions by fourier transform[J]. Journal of Beijing Forestry University, 2012, 34(3): 137-141.
    [10]LI Li, XI Bao-tian, YANG Yong-fu. Measurement of residual stress in tensioned circular saws using X-rays[J]. Journal of Beijing Forestry University, 2005, 27(3): 87-90.
  • Cited by

    Periodical cited type(13)

    1. 郭来珍,陈虹,赵善超,陈凤,陈兵权,陈鑫悦. 天山花楸不同种源种子表型变异分析. 种子. 2022(10): 50-57+2 .
    2. 孙永玉,李昆,雷晨雨,田瑞杰,张春华,冯德枫,刘方炎,唐国勇. 干热河谷小桐子不同种源的光合生理及生长性状. 应用与环境生物学报. 2021(02): 351-356 .
    3. 刘莉,王磊,吴丹,赵永军,庄振杰,王震,鲁仪增,刘立江,陆璐,解孝满. 不同种源文冠果种子的表型变异. 经济林研究. 2021(04): 97-105 .
    4. 郭国业,徐莺,唐琳,陈放,韩学琴. 不同地理种源麻疯树表型变异研究. 四川农业大学学报. 2020(02): 143-151+160 .
    5. 句娇,毕泉鑫,赵阳,于丹,崔艺凡,傅光辉,范思琪,陈梦园,于海燕,王利兵. 不同种源文冠果种子及苗期性状地理变异. 江西农业大学学报. 2019(03): 529-540 .
    6. 张毅,敖妍,刘觉非,赵磊磊,张永明. 文冠果种实性状变异规律及优良单株选择. 东北林业大学学报. 2019(09): 1-5 .
    7. 张毅,敖妍,刘觉非,赵磊磊,由海德. 不同分布区文冠果种实性状对生态因子的响应. 西北林学院学报. 2019(05): 85-90 .
    8. 赵海鹄,梁文汇,李宝财,梁忠云. 广西细子龙核仁油化学成分分析. 广西林业科学. 2019(04): 531-534 .
    9. 惠文凯,王益,陈晓阳. 麻疯树种子含油量近红外光谱定标模型的建立. 北京林业大学学报. 2018(01): 1-7 . 本站查看
    10. 何霞,邓成,杨嘉麒,张登,张梦洁,廖柏勇,王芳,陈晓阳. 苦楝种源间生长性状的早期地理变异分析. 北京林业大学学报. 2018(07): 45-54 . 本站查看
    11. 覃敏,尹光天,杨锦昌,李荣生,邹文涛. 米老排不同种源的表型性状变异分析. 浙江农林大学学报. 2017(01): 112-119 .
    12. 许洋,李迎超,冯慧,王迪,丁可君,郭超,刘国军,厉月桥,宁超,贺磊,郭芳. 不同种源栓皮栎种子表型性状的变异分析. 安徽农业科学. 2015(25): 164-167 .
    13. 许洋,李迎超,冯慧,王迪,丁可君,郭超,刘国军,厉月桥,宁超,贺磊,郭芳. 不同种源麻栎种子表型性状的变异分析. 林业科技通讯. 2015(09): 8-12 .

    Other cited types(5)

Catalog

    Article views (653) PDF downloads (61) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return