• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wang Yin, Yao Ruiling. Establishment of an effective protocol for cultivation of tissue cultured seedlings in Pinus massoniana superior provenance[J]. Journal of Beijing Forestry University, 2020, 42(6): 43-51. DOI: 10.12171/j.1000-1522.20190396
Citation: Wang Yin, Yao Ruiling. Establishment of an effective protocol for cultivation of tissue cultured seedlings in Pinus massoniana superior provenance[J]. Journal of Beijing Forestry University, 2020, 42(6): 43-51. DOI: 10.12171/j.1000-1522.20190396

Establishment of an effective protocol for cultivation of tissue cultured seedlings in Pinus massoniana superior provenance

More Information
  • Received Date: October 17, 2019
  • Revised Date: November 19, 2019
  • Available Online: May 28, 2020
  • Published Date: June 30, 2020
  • ObjectivePinus massoniana is a main tree species for ecological construction and timber in southern areas of China. However, the productivity of plantation is generally low resulting from the limitation of improved varieties, which leads to the slow development of industrialization in P. massoniana. It is necessary to develop an effective propagation system of elite germplasm for P. massoniana in order to promote the use of improved varieties, accelerate the industrial development, and enhance the competitiveness of industry.
    MethodIn this study, ‘Tongmiansong’ (TM), the backbone of P. massoniana breeding resources was used as the research object, zygotic embryos excised from immature cones were applied to explants, and mature somatic embryos (SE) obtained via somatic embryogenesis were used for testing materials. Concerning the technical bottlenecks of P. massoniana tissue culture, including low germination rate, poor shoot growth, and recalcitrance to rooting, effects of active charcoal (AC), basal media, and plant hormones on SE germination as well as reinvigoration and adventitious rooting of shoots were investigated in the present study.
    Result(1) AC significantly improved germination of TM mature SE, while a high level of AC was able to weaken their germination effects, and the best effect was observed at the 0.83 mol/L AC treatment. Based on the application of AC in the medium, the basal medium composed of high N, low ratio of NH4+/NO3, and moderate K and Ca furtherly enhanced the germination of SE, reaching 94.1% of germinating rate. (2) 0.42 mol/L AC effectively promoted the elongation of germinated SE. Under the treatment of 4 μmol/L TDZ, induction of axillary buds was better, achieving effective bud proliferation coefficient of 5.6/35 d, and shoot height of 9.2 cm/50 d. (3) After 60 days of 1.2 μmol/L NAA + 2 μmol/L PBZ application in the rooting medium, rooting rate was 94.3%, root number was 6.4, and survival rate was 95.8% after 3-month transplanting.
    ConclusionThe effective breeding system by tissue culture for TM was firstly established via a combined approach of somatic embryogenesis and organogeneis in this study, which would be used for the rapid propagation of elite germplasm for P. massoniana as well as for the research on genetic transformation, providing solid foundation for industrialization of improved varieties and molecular breeding in P. massoniana.
  • [1]
    黄健秋, 卫志明. 松属树种的组织培养和原生质体培养[J]. 植物学通报, 1994, 11(1):34−42.

    Huang J Q, Wei Z M. Tissue and protoplast culture of Pinus species[J]. Chinese Bulletin of Botany, 1994, 11(1): 34−42.
    [2]
    丁贵杰, 周志春, 王章荣, 等. 马尾松纸浆用材林培育与利用[M]. 北京: 中国林业出版社, 2006: 1–10.

    Ding G J, Zhou Z C, Wang Z R, et al. Cultivation and utilization of pulpwood stand for Pinus massoniana[M]. Beijing: China Forestry Publishing House, 2006: 1–10.
    [3]
    杨章旗, 刘达峰. 马尾松: 广西优良用材树种[J]. 广西林业, 2011, 29(8):41−42. doi: 10.3969/j.issn.1004-0390.2011.08.020

    Yang Z Q, Liu D F. Pinus massoniana: superior timber tree species of Guangxi[J]. Guangxi Forestry, 2011, 29(8): 41−42. doi: 10.3969/j.issn.1004-0390.2011.08.020
    [4]
    杨模华, 张冬林, 李志辉, 等. 马尾松幼胚体细胞胚胎发生研究[J]. 植物生理学报, 2011, 47(9):904−912.

    Yang M H, Zhang D L, Li Z H, et al. Somatic embryogenesis with immature embryos of masson pine (Pinus massoniana Lamb.)[J]. Plant Physiology Journal, 2011, 47(9): 904−912.
    [5]
    季孔庶, 王章荣, 陈天华, 等. 马尾松扦插繁殖年龄效应及继代扦插复壮效果[J]. 浙江林学院学报, 1996, 16(4):341−345.

    Ji K S, Wang Z R, Chen T H, et al. Cyclophysis and effect of rejuvenation with continued cuttage in Pinus massoniana cutting propagation[J]. Journal of Zhejiang Forestry College, 1996, 16(4): 341−345.
    [6]
    Klimaszewska K, Hargreaves C, Lelu-Walter M, et al. Advances in conifer somatic embryogenesis since year 2000[M]//Germanà M A, Lambardi M. In vitro embryogenesis in higher plants, methods in molecular biology. New York: Springer Science Business Media, 2016: 131–166.
    [7]
    Pullman G S, Zeng X, Copeland-Lamp B, et al. Conifer somatic embryogenesis: improvements by supplementation of medium with oxidation-reduction agents[J]. Tree Physiology, 2015, 35(2): 209−224. doi: 10.1093/treephys/tpu117
    [8]
    Thomas T D. The role of activated charcoal in plant tissue culture[J]. Biotechnology Advances, 2008, 26(6): 618−631. doi: 10.1016/j.biotechadv.2008.08.003
    [9]
    De Diego N, Montalbán I A, Fernández E, et al. In vitro regeneration of Pinus pinaster adult trees[J]. Canadian Journal of Forestry Research, 2008, 38(10): 2607−2615. doi: 10.1139/X08-102
    [10]
    Pan J J, Van Staden J. The use of activated charcoal in in vitro culture: a review[J]. Plant Growth Regulation, 1998, 26(3): 155−163. doi: 10.1023/A:1006119015972
    [11]
    Yao R L, Wang Y. An effective protocol for regenerating mature Pinus massoniana L. trees by tissue culture[J]. Research Journal of Biotechnology, 2016, 11(12): 75−80.
    [12]
    黄健秋, 卫志明, 许智宏. 马尾松成熟合子胚的体细胞胚胎发生和植株再生[J]. 植物学报, 1995, 37(4):289−294, 338.

    Huang J Q, Wei Z M, Xu Z H. Somatic embryogenesis and plantlet regeneration from callus of of mature zygotic embryos of masson pine[J]. Acta Botanica Sinica, 1995, 37(4): 289−294, 338.
    [13]
    李校雨, 吕成群, 黄宝灵, 等. 马尾松组培苗不定根诱导及不定根解剖观察[J]. 西北林学院学报, 2009, 24(3):80−84.

    Li X Y, Lü C Q, Huang B L, et al. Adventitious roots’ induction of Pinus massoniana shoots in test tubes and anatomical observation[J]. Journal of Northwest Forestry College, 2009, 24(3): 80−84.
    [14]
    伊书亮, 张冬林, 杨模华, 等. 外植体采集时期与冷藏处理对马尾松愈伤组织诱导的影响[J]. 广西林业科学, 2013, 42(1):8−13. doi: 10.3969/j.issn.1006-1126.2013.01.002

    Yin S L, Zhang D L, Yang M H, et al. Effects of explant collecting time and storage duration on callus induction of Pinus massoniana[J]. Guangxi Forestry Science, 2013, 42(1): 8−13. doi: 10.3969/j.issn.1006-1126.2013.01.002
    [15]
    Wang Y, Yao R L. Plantlet regeneration of adult Pinus massoniana Lamb. trees using explants collected in March and thidiazuron in culture medium[J]. Journal of Forestry Research, 2017, 28(6): 1169−1175. doi: 10.1007/s11676-017-0412-9
    [16]
    Aitken-Christie J, Singh A P, Davies H. Multiplication of meristematic tissue: a new tissue culture system for radiata pine[M]//Hanover J W, Keathley D E. Genetic manipulation of woody plants. New York: Plenum, 1988: 413–432.
    [17]
    Gupta P K, Durzan D J. Shoot multiplication from mature trees of Douglas-fir (Pseudotsuga menziesii) and sugar pine (Pinus lambertiana)[J]. Plant Cell Reports, 1985, 4(4): 177−179. doi: 10.1007/BF00269282
    [18]
    Gresshoff P M, Doy C H. Development and differentiation of haploid Lycopersicon esculentum (tomato)[J]. Planta, 1972, 107(2): 161−170. doi: 10.1007/BF00387721
    [19]
    Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures[J]. Physiologia Plantarum, 1962, 15(3): 473−497. doi: 10.1111/j.1399-3054.1962.tb08052.x
    [20]
    Wang Y, Yao R L. Increased endogenous indole-3-acetic acid:abscisic acid ratio is a reliable marker of Pinus massoniana rejuvenation[J]. Biotechnic & Histochemistry, 2019, 94(7): 546−553.
    [21]
    Van Winkle S C, Pullman G S. The combined impact of pH and activated carbon on the elemental composition of a liquid conifer embryogenic tissue initiation medium[J]. Plant Cell Reports, 2003, 22(5): 303−311. doi: 10.1007/s00299-003-0686-6
    [22]
    李国树, 徐成东, 王波, 等. 植物组织培养节能降耗研究进展[J]. 植物学研究, 2014, 3(3):105−110. doi: 10.12677/BR.2014.33015

    Li G S, Xu C D, Wang B, et al. Research progress on plant tissue culture system of saving energy and reducing consumption[J]. Botanical Research, 2014, 3(3): 105−110. doi: 10.12677/BR.2014.33015
    [23]
    曾嬿冰, 周运超, 张伟, 等. 马尾松优良种源对N肥的响应[J]. 贵州林业科技, 2016, 44(1):1−8.

    Zeng Y B, Zhou Y C, Zhang W, et al. Response of superior provenance of Pinus massoniana to N fertilize[J]. Guizhou Forestry Science and Technology, 2016, 44(1): 1−8.
    [24]
    潘瑞炽. 植物生理学[M]. 7版. 北京: 高等教育出版社, 2012.

    Pan R Z. Plant physiology[M]. 7th ed. Beijing: Higher Education Press, 2012.
    [25]
    刘忠新, 刘莉梅. 浅议植物生长所必须的营养元素与其生理功能[J]. 现代农业研究, 2007, 13(12):8. doi: 10.3969/j.issn.1674-0653.2007.12.007

    Liu Z X, Liu L M. Discussion on vital nutrient elements for plant growth and their physiological function[J]. Modern Agriculture Research, 2007, 13(12): 8. doi: 10.3969/j.issn.1674-0653.2007.12.007
    [26]
    Yolande P, Patrick D, Ludovic L, et al. Endogenous cytokinins as biochemical markers of rubber-tree (Hevea brasiliensis) clone rejuvenation[J]. Plant Cell, Tissue and Organ Culture, 1997, 47(3): 239−245. doi: 10.1007/BF02318978
    [27]
    曾少玲, 方良全, 吉文, 等. 桉树组织培养中的玻璃化现象及克服措施[J]. 桉树科技, 2002, 25(1):30−31. doi: 10.3969/j.issn.1674-3172.2002.01.006

    Zeng S L, Fang L Q, Ji W, et al. Vitrification and its countermeasures during tissue culture of eucalypts[J]. Eucalypt Science & Technology, 2002, 25(1): 30−31. doi: 10.3969/j.issn.1674-3172.2002.01.006
    [28]
    段娜, 贾玉奎, 徐军, 等. 植物内源激素研究进展[J]. 中国农学通报, 2015, 31(2):159−165. doi: 10.11924/j.issn.1000-6850.2014-2335

    Duan N, Jia Y K, Xu J, et al. Research progress on plant endogenous hormones[J]. Chinese Agricultural Science Bulletin, 2015, 31(2): 159−165. doi: 10.11924/j.issn.1000-6850.2014-2335
    [29]
    姚瑞玲, 王胤, 吴幼媚. 马尾松组培生根关键因子分析[J]. 广西植物, 2016, 36(11):1288−1294.

    Yao R L, Wang Y, Wu Y M. Analysis for key factors affecting rooting in Pinus massoniana by tissue culture[J]. Guihaia, 2016, 36(11): 1288−1294.
    [30]
    Watson G. Effect of transplanting and paclobutrazol on root growth of ‘Green Column’ black maple and ‘Summit’ green ash[J]. Journal of Environmental Horticulture, 2004, 22(4): 209−212.
    [31]
    Kamran M, Wennan S, Ahmad I, et al. Application of paclobutrazol affect maize grain yield by regulating root morphological and physiological characteristics under a semi-arid region[J]. Scientific Reports, 2018, 8(1): 4818−4832. doi: 10.1038/s41598-018-23166-z
    [32]
    Fu X, Harberd N P. Auxin promotes Arabidopsis root growth by modulating gibberellin response[J]. Nature, 2003, 421: 740−743. doi: 10.1038/nature01387
    [33]
    钮世辉, 李伟, 陈晓阳. 赤霉素对根尖径向生长的调节作用研究[J]. 北京林业大学学报, 2013, 35(3):71−76.

    Niu S H, Li W, Chen X Y. Negative regulation of gibberellin on root tip diameter[J]. Journal of Beijing Forestry University, 2013, 35(3): 71−76.
    [34]
    Mauriat M, Petterle A, Bellini C, et al. Gibberellins inhibit adventitious rooting in hybrid aspen and Arabidopsis by affecting auxin transport[J]. Plant Journal, 2014, 78(3): 372−384. doi: 10.1111/tpj.12478
    [35]
    Vaičiukynė M, Žiauka J, Žūkienė R, et al. Abscisic acid promotes root system development in birch tissue culture: a comparison to aspen culture and conventional rooting-related growth regulators[J]. Physiologia Plantarum, 2019, 165(1): 114−122. doi: 10.1111/ppl.12860
    [36]
    Takáč T, Obert B, Rolčík J, et al. Improvement of adventitious root formation in flax using hydrogen peroxide[J]. New Biotechnology, 2016, 33(5): 728−734. doi: 10.1016/j.nbt.2016.02.008
    [37]
    Cano A, Sánchez-García A B, Albacete A, et al. Enhanced conjugation of auxin by GH3 enzymes leads to poor adventitious rooting in carnation stem cuttings[J]. Frontiers in Plant Science, 2018, 9(4): 1−17.
  • Related Articles

    [1]Yang Weicong, Zhang Chenxing, Zhao Hanqing, Liu Xinru, Pang Xiaoming, Li Yingyue. Optimization of tissue culture system and establishment of high-efficiency adventitious bud regeneration system from leaf explants of tetraploid Ziziphus jujuba var. spinosa[J]. Journal of Beijing Forestry University, 2023, 45(6): 8-18. DOI: 10.12171/j.1000-1522.20220067
    [2]WEI Man-man, WANG Jiang-min, MUHAMMAD Imtiaz, HONG Bo. Culture in vitro and plant regeneration from petals of flower color chimera in chrysanthemum[J]. Journal of Beijing Forestry University, 2014, 36(4): 107-112. DOI: 10.13332/j.cnki.jbfu.2014.04.020
    [3]PEI Hong-mei, HAN Ke-ting, HU Ke, SUN Qiu-ling, DAI Si-lan. Plant regeneration of five color series of Senecio cruentus ‘Jester’[J]. Journal of Beijing Forestry University, 2011, 33(1): 108-114.
    [4]ZHANG Qi-chang, LIANG Qi-lan, XIA Xin-li, YIN Wei-lun. In vitro culture and plant regeneration from sprouting buds of Lonicera edulis[J]. Journal of Beijing Forestry University, 2010, 32(4): 126-130.
    [5]LI Jun, XIA Xin-li, LIU Cui-qiong, YIN Wei-lun. Indirect somatic embryogenesis and plant regeneration of Hippophae rhamnoides sub. sinensis[J]. Journal of Beijing Forestry University, 2009, 31(3): 89-95.
    [6]ZHANG Bing-yu, SU Xiao-hua, ZHENG Shu-xing.. Establishment of a highly efficient plant regeneration system of Populus davidiana×P. bolleana and study of its genetic stability[J]. Journal of Beijing Forestry University, 2008, 30(3): 68-73.
    [7]XIONG Dan, CHEN Fa-ju, LIANG Hong-wei, WANG Yu-bing, LI Feng-lan. Establishment of in vitro plant regeneration system of rare endangered plant Emmenopterys henryi Oliv[J]. Journal of Beijing Forestry University, 2007, 29(5): 44-49. DOI: 10.13332/j.1000-1522.2007.05.009
    [8]LIN Ya, LIU Qing-lin. Plant regeneration from immature embryos of roses[J]. Journal of Beijing Forestry University, 2007, 29(3): 35-39. DOI: 10.13332/j.1000-1522.2007.03.006
    [9]LIU Jian-feng, YAN Xiu-feng, CHENG Yun-qing, ZHOU Xiao-mei. Cryopreservation of calli by vitrification and plant regeneration of Rhodiola sachalinensis[J]. Journal of Beijing Forestry University, 2007, 29(2): 147-151.
    [10]JIA Cai-feng, LI Yue, ZHANG Rong. Organ culture of mature embryos in Pinus armandii Franch[J]. Journal of Beijing Forestry University, 2006, 28(4): 100-105.
  • Cited by

    Periodical cited type(11)

    1. 施云凤,李文秀,贺军军,罗萍,张华林,张凤英. 甲基磺酸乙酯诱变对阳春砂仁出苗的影响. 热带农业科学. 2024(10): 47-51 .
    2. 崔晓彤,刘婉婷,张恒月,段乌拉,王君. 杨树派间远缘杂种小胡杨(Populus simonii×P.euphratica)组培快繁体系的构建. 分子植物育种. 2023(07): 2337-2343 .
    3. 王欢,曾琪瑶,王春胜,郭俊杰,曾杰. 油榄仁种胚高质量组培快繁体系. 中南林业科技大学学报. 2023(09): 53-61+88 .
    4. 李春兰. 毛白杨良种繁殖技术研究进展. 安徽农业科学. 2022(10): 22-24+45 .
    5. 王雷,李百和,赵培霞,韩鹏. 蒙古莸(Caryopteris mongholica)组培快繁体系的建立和优化. 分子植物育种. 2022(14): 4745-4754 .
    6. 陈耀兵,罗凯,李美东,黄秀芳,刘汉蓁,王水清,陈圣林. “鄂选1号”山桐子组培繁育体系构建. 北京林业大学学报. 2022(12): 23-31 . 本站查看
    7. 屈超,叶冬梅,郭欣,崔雁敏,朝勒蒙. 互叶醉鱼草茎段组织培养技术研究. 江苏林业科技. 2022(06): 15-19 .
    8. 马秋月,李倩中,李淑顺,朱璐,颜坤元,李淑娴,张斌,闻婧. 元宝枫组织培养及快速繁殖技术研究. 南京林业大学学报(自然科学版). 2021(02): 220-224 .
    9. 石进朝,陈博,陈兰芬,李彦侠. 阳光毛白杨带芽茎段再生体系的构建. 江苏农业科学. 2021(14): 50-55 .
    10. 梁艳,赵雪莹,白雪,刘德强,张妍,潘朋. PVP处理对黑皮油松外植体酚类物质形成及酶活性的影响. 林业科学. 2021(10): 166-174 .
    11. 王建新,吴志茹,冯光惠. 榆林沙区引种波尔卡树莓的组织培养与快速繁殖. 山西农业科学. 2019(12): 2078-2082 .

    Other cited types(2)

Catalog

    Article views (1963) PDF downloads (78) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return