• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Li Luchen, Gui Ziyang, Qin Shugao, Zhang Yuqing, Liu Liang, Yang Kaijie. Foliar condensate absorption capacity of four typical plant species and their physiological responses to water in the Mu Us Sandy Land of northwestern China[J]. Journal of Beijing Forestry University, 2021, 43(2): 72-80. DOI: 10.12171/j.1000-1522.20200024
Citation: Li Luchen, Gui Ziyang, Qin Shugao, Zhang Yuqing, Liu Liang, Yang Kaijie. Foliar condensate absorption capacity of four typical plant species and their physiological responses to water in the Mu Us Sandy Land of northwestern China[J]. Journal of Beijing Forestry University, 2021, 43(2): 72-80. DOI: 10.12171/j.1000-1522.20200024

Foliar condensate absorption capacity of four typical plant species and their physiological responses to water in the Mu Us Sandy Land of northwestern China

More Information
  • Received Date: January 17, 2020
  • Revised Date: December 28, 2020
  • Available Online: January 03, 2021
  • Published Date: February 23, 2021
  •   Objective  In this study, we examined Agriophyllum squarrosum, Corispermum puberulum, Chenopodium aristatum, and Sophora alopecuroides in the Mu Us Desert of northwestern China to explore the ability of leaf condensate absorption and their physiological responses to water.
      Method  We determined whether the condensate can be absorbed by the leaves of four plant species, and whether the absorbed water can be transported to the root and rhizosphere soil by dew covered experiments and stable isotope tracer technology to contrast the δ2H values of samples in the leaves, roots and rhizosphere soil from the treatment and control. Meanwhile, we measured leaf water potential (ΨL), leaf water content (wL), and stomatal conductance (Gs) before and after dew treatment by dew point water potential meter, electronic balance and plant porometer in order to evaluate the effects of foliar condensate absorption on the species.
      Result  (1) After the deuterium labelled condensate treatment, the δ2H values in samples of leaves (20‰−100‰) in the treatment group of four plant species were significantly higher than control (−25‰− −15‰); the δ2H values in samples of root(−45‰ − −30‰) and rhizosphere soil (−50‰ − −40‰) in the treatment group did not change significantly compared with control. (2) After the dew treatment, ΨL, wL of A. squarrosum increased by 23.81%, 2.49%, and Gs of it decreased by 57.40%, respectively; wL of C. puberulum increased by 2.45%, but the ΨL and Gs were not change significantly; ΨL of C. aristatum increased by 21.95%, but the wLand Gs were not change obviously; for S. alopecuroides, there were no significant differences in ΨL, wL and Gs.
      Conclusion  We find that all of the four plant species can absorb condensate through leaves, but the water cannot be transported to the root and rhizosphere soil. Agriophyllum squarrosum, Corispermum puberulum and Chenopodium aristatum could improve their water physiological state through water absorption. It may be an important water use strategy for them to adapt to drought environment, for this helps the plants to survive. However, Sophora alopecuroides does not significantly respond to foliar condensate absorption and also could not improve its water physiological state through this process.
  • [1]
    蒋瑾, 王康富, 张维静. 沙地凝结水及在水分平衡中作用的研究[J]. 干旱区研究, 1993, 10(2):1−9.

    Jiang J, Wang K F, Zhang W J. Study on condensation water of sandy land and its role in water balance[J]. Arid Zone Research, 1993, 10(2): 1−9.
    [2]
    Zangvil A. Six years of dew observations in the Negev Desert, Israel[J]. Journal of Arid Environments, 1996, 32(4): 361−371. doi: 10.1006/jare.1996.0030.
    [3]
    Kalthoffa N, Fiebig-Wittmaack M, Meiβner C, et al. The energy balance, evapo-transpiration and nocturnal dew deposition of an arid valley in the Andes[J]. Journal of Arid Environments, 2006, 65(3): 420−443. doi: 10.1016/j.jaridenv.2005.08.013.
    [4]
    Malek E, McCurdy G, Giles B. Dew contribution to the annual water balances in semi-arid desert valleys[J]. Journal of Arid Environments, 1999, 42(2): 71−80. doi: 10.1006/jare.1999.0506.
    [5]
    郭晓楠, 查天山, 贾昕, 等. 典型沙生灌木生态系统凝结水量估算[J]. 北京林业大学学报, 2016, 38(10):80−87.

    Guo X N, Zha T S, Jia X, et al. Estimation of dewfall amount in a typical desert shrub ecosystem[J]. Journal of Beijing Forestry University, 2016, 38(10): 80−87.
    [6]
    Scanlon B R, Milly P C D. Water and heat fluxes in desert soils(2): numerical simulations[J]. Water Resources Research, 1994, 30(3): 721−734. doi: 10.1029/93WR03252
    [7]
    曾亦键, 万力, 王旭升, 等. 浅层包气带地温与含水量昼夜动态的实验研究[J]. 地学前缘, 2006, 13(1):52−57. doi: 10.3321/j.issn:1005-2321.2006.01.008.

    Zeng Y J, Wan L, Wang X S, et al. An experimental study of day and night trends of soil temperature and moisture in the shallow unsaturated zone[J]. Earth Science Frontiers, 2006, 13(1): 52−57. doi: 10.3321/j.issn:1005-2321.2006.01.008.
    [8]
    Jacobs A F G, Heusinkveld B G, Berkowicz S M. Dew deposition in a desert system: a simple simulation model[J]. Journal of Arid Environments, 1999, 42(3): 211−222. doi: 10.1006/jare.1999.0523
    [9]
    Baguskas S A, King J Y, Fischer D T, et al. Impact of fog drip versus fog immersion on the physiology of bishop pine saplings[J]. Functional Plant Biology, 2017, 44(3): 339−350. doi: 10.1071/FP16234.
    [10]
    龚雪伟. 荒漠木本植物光合器官吸收冠层凝结水机理探究[D]. 乌鲁木齐: 新疆大学, 2017.

    Gong X W. A probe into the mechanisms of canopy dew uptake by photosynthetic organs of desert trees: based on molecular, cellular and physiological perspectives[D]. Urumqi: Xinjiang University, 2017.
    [11]
    Wang X H, Xiao H L, Cheng Y B, et al. Leaf epidermal water-absorbing scales and their absorption of unsaturated atmospheric water in Reaumuria soongorica, a desert plant from the northwest arid region of China[J]. Journal of Arid Environments, 2016, 128: 17−29. doi: 10.1016/j.jaridenv.2016.01.005.
    [12]
    Wang X H, Xiao H L, Ren J, et al. An ultrasonic humidification fluorescent tracing method for detecting unsaturated atmospheric water absorption by the aerial parts of desert plants[J]. Journal of Arid Land, 2016, 8(2): 272−283. doi: 10.1007/s40333-015-0018-z.
    [13]
    Yan X, Zhou M X, Dong X C, et al. Molecular mechanisms of foliar water uptake in a desert tree[J]. AoB Plants, 2015, 7: 129.
    [14]
    庄艳丽, 赵文智. 荒漠植物雾冰藜和沙米叶片对凝结水响应的模拟实验[J]. 中国沙漠, 2010, 30(5):1068−1074.

    Zhuang Y L, Zhao W Z. Experimental study of effects of artificial dew on Bassia dasyphylla and Agriophyllum squarrosum[J]. Journal of Desert Research, 2010, 30(5): 1068−1074.
    [15]
    Stone E C. Dew as an ecological factor(II): the effect of artificial dew on the survival of Pinus ponderosa and associated species[J]. Ecology, 1957, 38(3): 414−422. doi: 10.2307/1929884.
    [16]
    Martin C E, Willert D J. Leaf epidermal hydathodes and the ecophysiological consequences of foliar water uptake in species of Crassula from the Namib Desert in Southern Africa[J]. Plant Biology, 2000, 2(2): 229−242. doi: 10.1055/s-2000-9163.
    [17]
    Hill A J, Dawson T E, Shelef O, et al. The role of dew in Negev desert plants[J]. Oecologia, 2015, 178(2): 317−327. doi: 10.1007/s00442-015-3287-5.
    [18]
    Goldsmith G R, Matzke N J, Dawson T E. The incidence and implications of clouds for cloud forest plant water relations[J]. Ecology Letters, 2013, 16(3): 307−314. doi: 10.1111/ele.12039.
    [19]
    Fu P L, Liu W J, Fan Z X, et al. Is fog an important water source for woody plants in an Asian tropical karst forest during the dry season?[J]. Ecohydrology, 2016, 9(6): 964−972. doi: 10.1002/eco.1694.
    [20]
    郑玉龙, 冯玉龙. 西双版纳地区附生与非附生植物叶片对雾水的吸收[J]. 应用生态学报, 2006, 17(6):977−981. doi: 10.3321/j.issn:1001-9332.2006.06.005.

    Zheng Y L, Feng Y L. Fog water absorption by the leaves of epiphytes and non-epiphytes in Xishuangbanna[J]. Chinese Journal of Applied Ecology, 2006, 17(6): 977−981. doi: 10.3321/j.issn:1001-9332.2006.06.005.
    [21]
    郑新军, 李嵩, 李彦. 准噶尔盆地荒漠植物的叶片水分吸收策略[J]. 植物生态学报, 2011, 35(9):893−905. doi: 10.3724/SP.J.1258.2011.00893

    Zheng X J, Li S, Li Y. Leaf water uptake strategy of desert plants in the Junggar Basin, China[J]. Chinese Journal of Plant Ecology, 2011, 35(9): 893−905. doi: 10.3724/SP.J.1258.2011.00893
    [22]
    Vitarelli N C, Riina R, Cassino M F, et al. Trichome-like emergences in Croton of Brazilian highland rock outcrops: evidences for atmospheric water uptake[J]. Perspectives in Plant Ecology, Evolution and Systematics, 2016, 22: 23−35. doi: 10.1016/j.ppees.2016.07.002.
    [23]
    Pina A L C B, Zandavalli R B, Oliveira R S, et al. Dew absorption by the leaf trichomes of Combretum leprosum in the Brazilian semiarid region[J]. Functional Plant Biology, 2016, 43(9): 851−861. doi: 10.1071/FP15337
    [24]
    Eller C B, Lima A L, Oliveira R S. Foliar uptake of fog water and transport belowground alleviates drought effects in the cloud forest tree species, Drimys brasiliensis (Winteraceae)[J]. New Phytologist, 2013, 199(1): 151−162. doi: 10.1111/nph.12248.
    [25]
    岑宇, 刘美珍. 凝结水对干旱胁迫下羊草和冰草生理生态特征及叶片形态的影响[J]. 植物生态学报, 2017, 41(11):1199−1207. doi: 10.17521/cjpe.2017.0114.

    Cen Y, Liu M Z. Effects of dew on eco-physiological traits and leaf structures of Leymus chinensis and Agropyron cristatum grown under drought stress[J]. Chinese Journal of Plant Ecology, 2017, 41(11): 1199−1207. doi: 10.17521/cjpe.2017.0114.
    [26]
    Zhuang Y L, Ratcliffe S. Relationship between dew presence and Bassia dasyphylla plant growth[J]. Journal of Arid Land, 2012, 4(1): 11−18. doi: 10.3724/SP.J.1227.2012.00011.
    [27]
    Baguskas S A, Clemesha R E S, Loik M E. Coastal low cloudiness and fog enhance crop water use efficiency in a California agricultural system[J]. Agricultural and Forest Meteorology, 2018, 252: 109−120. doi: 10.1016/j.agrformet.2018.01.015.
    [28]
    林光辉. 稳定同位素生态学[M]. 北京: 高等教育出版社, 2013, 3−29.

    Lin G H. Stable Isotope Ecology [M]. Beijing: Higher Education Press, 2013, 3−29.
    [29]
    West A G, Patrickson S J, Ehleringer J R. Water extraction times for plant and soil materials used in stable isotope analysis[J]. Rapid Communications in Mass Spectrometry, 2006, 20(8): 1317−1321. doi: 10.1002/rcm.2456.
    [30]
    刘文茹, 彭新华, 沈业杰, 等. 激光同位素分析仪测定液态水的氢氧同位素及其光谱污染修正[J]. 生态学杂志, 2013, 32(5):1181−1186.

    Liu W R, Peng X H, Shen Y J, et al. Measurements of hydrogen and oxygen isotopes in liquid water by isotope ratio infrared spectroscopy (IRIS) and their spectral contamination corrections[J]. Chinese Journal of Ecology, 2013, 32(5): 1181−1186.
    [31]
    Schultz N M, Griffis T J, Lee X, et al. Identification and correction of spectral contamination in 2H/1H and 18O/16O measured in leaf, stem, and soil water[J]. Rapid Commun Mass Spectrom, 2011, 25(21): 3360−3368. doi: 10.1002/rcm.5236.
    [32]
    Kim K, Lee X. Transition of stable isotope ratios of leaf water under simulated dew formation[J]. Plant, Cell & Environment, 2011, 34(10): 1790−1801.
    [33]
    Guzmán-Delgado P, Earles J M, Zwieniecki M A. Insight into the physiological role of water absorption via the leaf surface from a rehydration kinetics perspective[J]. Plant, Cell & Environment, 2018, 41(8): 1886−1894.
    [34]
    Emery N C. Foliar uptake of fog in coastal California shrub species[J]. Oecologia, 2016, 182(3): 731−742. doi: 10.1007/s00442-016-3712-4.
    [35]
    Chamel A, Pineri M, Escoubes M. Quantitative determination of water sorption by plant cuticles[J]. Plant Cell and Environment, 1991, 14(1): 87−95. doi: 10.1111/j.1365-3040.1991.tb01374.x.
    [36]
    Burgess S S O, Dawson T E. The contribution of fog to the water relations of Sequoia sempervirens (D. Don): foliar uptake and prevention of dehydration[J]. Plant, Cell and Environment, 2004, 27(8): 1023−1034. doi: 10.1111/j.1365-3040.2004.01207.x.
    [37]
    屠骊珠. 内蒙古西部地区九种旱生植物叶的解剖观察[J]. 内蒙古大学学报(自然科学版), 1982, 13(4):485−504.

    Tu L Z. Anatomical observations on nine xerophytes leaves in the west part of the Inner Mongolia[J]. Journal of Inner Mongolia University( Natural Science Edition), 1982, 13(4): 485−504.
    [38]
    Yates D J, Hutley L B. Foliar uptake of water by wet leaves of Sloanea woollsii, an Australian subtropical rainforest tree[J]. Australian Journal of Botany, 1995, 43(2): 157−167. doi: 10.1071/BT9950157.
    [39]
    Rundel P W. Water uptake by organs other than roots[J]. Physiological Plant Ecology II, 1982, 12: 111−134.
    [40]
    Grammatikopoulus G, Manetas Y. Direct absorption of water by hairy leaves of Phlomis fruticosa and its contribution to drought avoidance[J]. Canadian Journal of Botany, 1994, 72(12): 1805−1811. doi: 10.1139/b94-222.
    [41]
    Alvarado-Barrientos M S, Holwerda F, Asbjornsen H, et al. Suppression of transpiration due to cloud immersion in a seasonally dry Mexican weeping pine plantation[J]. Agricultural and Forest Meteorology, 2014, 186: 12−25. doi: 10.1016/j.agrformet.2013.11.002.
    [42]
    Berry Z C, Smith W K. Cloud pattern and water relations in Picea rubens and Abies fraseri, southern Appalachian Mountains, USA[J]. Agricultural and Forest Meteorology, 2012, 162−163: 27−34. doi: 10.1016/j.agrformet.2012.04.005.
    [43]
    付晓玥. 阿拉善荒漠植物叶片性状研究[D]. 呼和浩特: 内蒙古大学, 2012.

    Fu X Y. Studies on leaf traits of Alashan desert plants[D]. Huhhot: Inner Mongolia University, 2012.
    [44]
    王春海. 中国藜属及近缘属植物的系统学研究[D]. 曲阜: 曲阜师范大学, 2015.

    Wang C H. Systematic study on Chenopodium and the related genera in China[D]. Qufu: Qufu Normal University, 2015.
    [45]
    Goldsmith G R, Lehmann M M, Cernusak L A, et al. Inferring foliar water uptake using stable isotopes of water[J]. Oecologia, 2017, 184(4): 763−766. doi: 10.1007/s00442-017-3917-1.
    [46]
    范志超. 不同生境苦豆子种群生产性能与种子休眠特性研究[D]. 兰州: 兰州大学, 2016.

    Fan Z C. Study on productivity and seed dormancy characteristics of Sophora alopecuroides L. populations in different habitats[D]. Lanzhou: Lanzhou University, 2016.
  • Related Articles

    [1]Zhang Lingling, Ren Ruifen, Jiang Xueru, Zhou Hao, Liu Yan. Effects of ethylene on the viability of cryopreserved Dendrobium protocorm-like bodies[J]. Journal of Beijing Forestry University, 2021, 43(6): 101-107. DOI: 10.12171/j.1000-1522.20200308
    [2]Kang Xiangyang. Thoughts on tree breeding strategies[J]. Journal of Beijing Forestry University, 2019, 41(12): 15-22. DOI: 10.12171/j.1000-1522.20190412
    [3]MIAO Yu-bo, ZHU Xiao-mei, LI Zhi-juan, JIA Feng-ling, LI Wei. Genetic evaluation of breeding resources of Pinus sylvestris var. mongolica from different improved generations[J]. Journal of Beijing Forestry University, 2017, 39(12): 71-78. DOI: 10.13332/j.1000-1522.20170194
    [4]ZHANG Zi-bin, CHENG Jin, YANG Mei, CUI Jing, CHEN Yun-meng, DENG Zhen-hai, ZHAO Xiu-hai. Food-deceptive pollination of Vanda concolor (Orchidaceae)[J]. Journal of Beijing Forestry University, 2015, 37(6): 100-106. DOI: 10.13332/j.1000-1522.20140020
    [5]HAN Xin, CHENG Fang-yun, XIAO Jia-jia, WANG Yue-lan, ZHANG Dong, WANG Ying, ZHONG Yuan. Crosses of Paeonia ostii Feng Dan Bai'as maternal parents and an analysis on the potential in tree peony breeding[J]. Journal of Beijing Forestry University, 2014, 36(4): 121-125. DOI: 10.13332/j.cnki.jbfu.2014.04.022
    [6]OUYANG Ying, LI Bing-ling, LIU Yan. Preservation of Dendrobium densiflorum pollen.[J]. Journal of Beijing Forestry University, 2010, 32(6): 151-154.
    [7]ZHANG Yu, ZHANG Qi-xiang, ZHAO Shi-wei, LING Chun-ying. Morphological characteristics and viability testing of Cypripedium macranthos seed[J]. Journal of Beijing Forestry University, 2010, 32(1): 69-73.
    [8]QIAN Hua, LIU Yan, ZHENG Yong-ping, YU Ji-ying, FAN Wen-feng. Effects of applying 6-BA on the Nobiletype Dendrobium flower bud differentiation and changes of hormones.[J]. Journal of Beijing Forestry University, 2009, 31(6): 27-31.
    [9]LI Zhen-jian, WANG Yan, PENG Zhen-hua, MIAO Kun, WANG Cai-yun, YU Yao. Effects of plant growth regulators on controlling pseudobulb and keikis of nobile type dendrobium.[J]. Journal of Beijing Forestry University, 2009, 31(1): 79-83.
  • Cited by

    Periodical cited type(11)

    1. 胡梦露,李宗艳,任书娴,杨建伟,伍倩,冯尧,叶松菩. 云南26种石斛种质资源的形态分类与亲缘关系. 江苏农业科学. 2025(01): 191-200 .
    2. 陈小玲,黄佳维,陈前程,杨碧云,余松金. 石斛兰遗传育种和栽培技术研究进展. 北方园艺. 2025(06): 130-135 .
    3. 江荣慧,杨焱冰,颜凤霞,田凡,许志高,王莲辉. 3种杂交石斛种子无菌播种快繁技术. 贵州林业科技. 2024(03): 13-19 .
    4. 刘靓,庄卫东,马晓娟,尤桂春,汤红玲,陈品品. 春石斛种质资源的表型性状及聚类分析. 热带农业科学. 2023(03): 1-10 .
    5. 崔学强,黄昌艳,邓杰玲,李先民,李秀玲,张自斌. 基于SLAF-seq技术的石斛兰SNP标记开发及亲缘关系分析. 生物技术通报. 2023(06): 141-148 .
    6. 彭婵,张新叶,刘宗坤,马林江,陈慧玲. 石斛属植物SSR分子标记的研究进展. 中国农学通报. 2022(13): 36-40 .
    7. 刘怡,王玥瑶,杨柳青,操赛雨,燕鑫,何碧珠,郭梨锦. 天宫石斛快繁技术研究. 种子. 2022(07): 138-143+149 .
    8. 崔学强,唐璇,黄昌艳,邓杰玲,李秀玲,卢家仕,张自斌. 基于iPBS标记的石斛兰种质资源遗传多样性分析及DNA指纹图谱构建. 热带作物学报. 2021(02): 317-324 .
    9. 杨红旗,许兰杰,李磊,董薇,梁慧珍,郝仰坤. 我国石斛新品种选育进展、存在问题及发展对策. 中国种业. 2021(11): 26-30 .
    10. 李娜,杨蕾蕾,陈朋,李凌飞. 蜻蜓石斛类原球茎的诱导与植株再生系统建立. 植物生理学报. 2021(12): 2387-2392 .
    11. 李桂琳,姜艳,刘林,李泽生,高燕,郭彩留,周侯光. 5种石斛花器官特性及人工授粉研究. 热带农业科技. 2019(04): 32-37+44 .

    Other cited types(2)

Catalog

    Article views (1587) PDF downloads (66) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return