• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wu Jiaojiao, Tian Qiuling, Yue Jiaxing, Tan Xing, Zhang Wen, Gao Lan, Li Linke, Liu Yun. Response of leaf photosynthetic characteristics of Cotinus coggygria to combined application of mineral nitrogen, phosphorus and potassium[J]. Journal of Beijing Forestry University, 2021, 43(2): 63-71. DOI: 10.12171/j.1000-1522.20200199
Citation: Wu Jiaojiao, Tian Qiuling, Yue Jiaxing, Tan Xing, Zhang Wen, Gao Lan, Li Linke, Liu Yun. Response of leaf photosynthetic characteristics of Cotinus coggygria to combined application of mineral nitrogen, phosphorus and potassium[J]. Journal of Beijing Forestry University, 2021, 43(2): 63-71. DOI: 10.12171/j.1000-1522.20200199

Response of leaf photosynthetic characteristics of Cotinus coggygria to combined application of mineral nitrogen, phosphorus and potassium

More Information
  • Received Date: July 10, 2020
  • Revised Date: July 27, 2020
  • Available Online: January 04, 2021
  • Published Date: February 23, 2021
  •   Objective  Relationship between photosynthetic characteristics and combined application of mineral nitrogen, phosphorus and potassium (N, P and K) has been studied to provide nutrient management strategies of Cotinus coggygria.
      Method  Under 10 treatments (see below), the photosynthetic pigment, leaf area, diurnal variation of photosynthetic parameters and light response curve of leaves of potted C. coggygria seedlings were measured, and theses generated data were then related to combined application of N, P and K. With a L9 (34) orthogonal design for N (0, 6, 12 g/plant), P (0, 10, 20 g/plant) and K (4, 8, 12 g/plant), these 10 treatments were T1 (N1P1K1), T2 (N1P2K2), T3 (N1P3K3), T4 (N2P1K2), T5 (N2P2K3), T6 (N2P3K1), T7 (N3P1K3), T8 (N3P2K1), T9 (N3P2K1) and T10 (N0P0K0).
      Result  Under each treatment, the net photosynthetic rate (Pn) and stomatal conductance (Gs) had a “double peak curve” change, while the transpiration rate (Tr) had a “single peak curve” change. The contents of total chlorophyll and carotenoid were higher under T5, T6 and T8 than under other treatments. Except for T2, the daily average value of Pn was significantly higher than control (P < 0.05). Among all the 10 treatments, T9 had the highest performance on all the tested diurnal variation parameters (Gs, Pn, Tr and light energy use efficiency (LUE)), and the daily average values of light response parameters (maximum net photosynthetic rate (Pnmax), light saturation point (LSP), light compensation point (LCP) and dark absorption rate (Rd)). In addition, the redundancy analysis showed that the contribution rate of fertilizer was P > N > K, while P had a greater effect on photosynthetic pigments (Chl s and Car) and a positive correlation with Pn, Pnmax and LSP. In contrast, N and K had greater influences on LUE, which was positively correlated with LCP, Tr and Gs.
      Conclusion  Results from this experiment demonstrate that among the tested 10 NPK treatments, T9 (12 g/plant N, 20 g/plant P and 8 g/plant K) is the optimal fertilization to significantly promote leaf photosynthetic capacity of C. coggygria.
  • [1]
    da Silva J A, Pacholczak A, Ilczuk A. Smoke tree (Cotinus Coggygria Scop.) propagation and biotechnology: a mini-review[J]. South African Journal of Botany, 2018, 114: 232−240. doi: 10.1016/j.sajb.2017.11.009.
    [2]
    聂江力, 裴毅, 李作鹏. 黄栌茎叶的生药学研究[J]. 北方园艺, 2015(10):136−141.

    Nie J L, Pei Y, Li Z P. Pharmacognostical study on the stems and leaves of Cotinus coggygria Scop.[J]. Northern Horticulture, 2015(10): 136−141.
    [3]
    刘国卫. 黄栌水溶性成分的提取及其抗高血压作用研究[D]. 郑州: 郑州大学, 2016.

    Liu G W. The extract of water-soluble ingredient and the anti-hypertensive function of Cotinus coggygria[D]. Zhengzhou: Zhengzhou University, 2016.
    [4]
    Serôdio J, Lavaud J. A model for describing the light response of the nonphotochemical quenching of chlorophyll fluorescence[J]. Photosynthesis Research, 2011, 108(1): 61−76. doi: 10.1007/s11120-011-9654-0.
    [5]
    Lachapelle P P, Shipley B. Interspecific prediction of photosynthetic light response curves using specific leaf mass and leaf nitrogen content: effects of differences in soil fertility and growth irradiance[J]. Annals of Botany, 2012, 109(6): 1149−1157. doi: 10.1093/aob/mcs032.
    [6]
    赵海波, 林琪, 刘义国, 等. 氮磷肥配施对超高产冬小麦灌浆期光合日变化及产量的影响[J]. 应用生态学报, 2010, 21(10):2545−2550.

    Zhao H B, Lin Q, Liu Y G, et al. Effects of combined application of nitrogen and phosphorus on diurnal variation of photosynthesis at grain-filling stage and grain yield of super high-yielding wheat[J]. Chinese Journal of Applied Ecology, 2010, 21(10): 2545−2550.
    [7]
    熊靓, 龚伟, 王景燕, 等. 配方施肥对汉源葡萄青椒叶片光合特性的影响[J]. 西北农林科技大学学报(自然科学版), 2019, 47(1):79−89.

    Xiong L, Gong W, Wang J Y, et al. Effects of formulated fertilization on photosynthetic characteristics of ‘Hanyuan Putao Qingjiao’[J]. Journal of Northwest A&F University (Nature Science Edition), 2019, 47(1): 79−89.
    [8]
    Moynul H M, Hamid A, Khanam M, et al. The effect of elevated CO2 concentration on leaf chlorophyll and nitrogen contents in rice during post-flowering phases[J]. Biologia Plantarum, 2006, 50(1): 69−73. doi: 10.1007/s10535-005-0076-8.
    [9]
    王虎兵, 曹红霞, 郝舒雪, 等. 温室番茄植株养分和光合对水肥耦合的响应及其与产量关系[J]. 中国农业科学, 2019, 52(10):1761−1771. doi: 10.3864/j.issn.0578-1752.2019.10.009.

    Wang H B, Cao H X, Hao S X, et al. Responses of plant nutrient and photosynthesis in greenhouse tomato to water-fertilizer coupling and their relationship with yield[J]. Scientia Agricultura Sinica, 2019, 52(10): 1761−1771. doi: 10.3864/j.issn.0578-1752.2019.10.009.
    [10]
    李金航, 齐秀慧, 徐程扬, 等. 黄栌幼苗叶片气体交换对干旱胁迫的短期响应[J]. 林业科学, 2015, 51(1):29−41.

    Li J H, Qi X H, Xu C Y, et al. Short-term responses of leaf gas exchange characteristics to drought stress of Cotinus coggygria seedlings[J]. Scientia Silvae Sinicae, 2015, 51(1): 29−41.
    [11]
    齐秀慧. 华北四个产地黄栌叶片气体交换对干旱胁迫的响应[D]. 北京: 北京林业大学, 2012.

    Qi X H. Responses of leaf gas exchange of Cotinus coggygria Scop. seedlings coming from four locations in North China to drought stress[D]. Beijing: Beijing Forestry University, 2012.
    [12]
    葛雨萱, 赵阳, 甘长青, 等. 不同光环境对黄栌光合特性及生长势和叶色的影响[J]. 中国农学通报, 2011, 27(19):19−22.

    Ge Y X, Zhao Y, Gan C Q, et al. The effects of different light environments on photosynthetic characteristics, growth potential and leaves color of Cotinus coggygria Scop.[J]. Chinese Agricultural Science Bulletin, 2011, 27(19): 19−22.
    [13]
    陈磊, 潘青华, 金洪. 温湿度对紫叶黄栌光合特性变化的影响[J]. 中国农学通报, 2008, 24(6):124−128.

    Chen L, Pan Q H, Jin H. Research on influence of relative humidity and air temparature on photosynthetic characteristics of Cotinus coggygria ‘Purpureus’[J]. Chinese Agricultural Science Bulletin, 2008, 24(6): 124−128.
    [14]
    叶子飘, 张海利, 黄宗安, 等. 叶片光能利用效率和水分利用效率对光响应的模型构建[J]. 植物生理学报, 2017, 53(6):1116−1122.

    Ye Z P, Zhang H L, Huang Z A, et al. Model construction of light use efficiency and water use efficiency based on a photosynthetic mechanistic model of light response[J]. Plant Physiology Journal, 2017, 53(6): 1116−1122.
    [15]
    叶子飘. 光合作用对光和CO2响应模型的研究进展[J]. 植物生态学报, 2010, 34(6):727−740. doi: 10.3773/j.issn.1005-264x.2010.06.012.

    Ye Z P. A review on modeling of responses of photosynthesis to light and CO2 [J]. Chinese Journal of Plant Ecology, 2010, 34(6): 727−740. doi: 10.3773/j.issn.1005-264x.2010.06.012.
    [16]
    贡璐, 罗艳, 解丽娜. 塔里木盆地北缘绿洲不同土地利用方式土壤有机碳、无机碳变化及其土壤影响因子[J]. 中国农业大学学报, 2017, 22(12):83−94. doi: 10.11841/j.issn.1007-4333.2017.12.10.

    Gong L, Luo Y, Xie L N. Changes in SOC and SIC concentration with land uses and their soil influencing factors in northern marginal zones of Tarim Basin[J]. Journal of China Agricultural University, 2017, 22(12): 83−94. doi: 10.11841/j.issn.1007-4333.2017.12.10.
    [17]
    王景燕, 龚伟, 包秀兰, 等. 水肥耦合对汉源花椒幼苗叶片光合作用的影响[J]. 生态学报, 2016, 36(5):1321−1330.

    Wang J Y, Gong W, Bao X L, et al. Coupling effects of water and fertilizer on diurnal variation of photosynthesis of Zanthoxylum bungeanum Maxim ‘Hanyuan’ seedling leaf[J]. Acta Ecologica Sinica, 2016, 36(5): 1321−1330.
    [18]
    乐佳兴, 田秋玲, 吴焦焦, 等. 无患子幼苗的生长和光合特性对重庆低山丘陵区不同生境的响应[J]. 北京林业大学学报, 2019, 41(6):75−85.

    Yue J X, Tian Q L, Wu J J, et al. Response of seedling growth and photosynthetic characteristics of Sapindus mukorossi to different habitats in low mountainous upland region of Chongqing, southwestern China[J]. Journal of Beijing Forestry University, 2019, 41(6): 75−85.
    [19]
    孟鹏, 李玉灵, 尤国春, 等. 彰武松、樟子松光合生产与蒸腾耗水特性[J]. 生态学报, 2012, 32(10):3050−3060. doi: 10.5846/stxb201104260547.

    Meng P, Li Y L, You G C, et al. Characteristics of photosynthetic productivity and water-consumption for transpiration in Pinus densiflora var. zhangwuensis and Pinus sylvestris var. mongolica[J]. Acta Ecologica Sinica, 2012, 32(10): 3050−3060. doi: 10.5846/stxb201104260547.
    [20]
    高岚, 乐佳兴, 张文, 等. 2种树龄巴山榧对光照的响应[J]. 北京林业大学学报, 2018, 40(10):34−42.

    Gao L, Yue J X, Zhang W, et al. Response to light intensity of Torreya fargesii in two kinds of tree age[J]. Journal of Beijing Forestry University, 2018, 40(10): 34−42.
    [21]
    Vytautas B, Duffy C. Excitation quenching in chlorophyll-carotenoid antenna systems: ‘coherent’ or ‘incoherent’[J]. Photosynthesis Research, 2020, 144(3): 301−315. doi: 10.1007/s11120-020-00737-8.
    [22]
    Amy K, Veronica C, Neal B, et al. Ecophysiological responses of Schizachyrium scoparium to water and nitrogen manipulations[J]. Great Plains Research, 2006, 16(1): 29−36.
    [23]
    Jajoo A, Bharti S, Mohanty P. Evaluation of the specific roles of anions in electron transport and energy transfer reactions in photosynthesis[J]. Photosynthetica, 2001, 39(3): 321−337. doi: 10.1023/A:1015125008028.
    [24]
    邱佳妹, 王康才, 朱光明, 等. 不同施肥配比对麦冬幼苗光合特性及干物质分配的影响[J]. 植物资源与环境学报, 2015, 24(2):61−66, 111. doi: 10.3969/j.issn.1674-7895.2015.02.09.

    Qiu J M, Wang K C, Zhu G M, et al. Effects of different fertilizing proportion on photosynthetic characteristics and dry matter allocation of Ophiopogon japonicas[J]. Journal of Plant Resources and Environment, 2015, 24(2): 61−66, 111. doi: 10.3969/j.issn.1674-7895.2015.02.09.
    [25]
    曹兆阳, 舒洪岚, 俞元春. 氮、磷、钾对银杏幼苗养分吸收及生长的影响[J]. 林业科技开发, 2009, 23(6):108−110. doi: 10.3969/j.issn.1000-8101.2009.06.030.

    Cao Z Y, Shu H L, Yu Y C. Effects of N, P, K on nutrient absorption and height growth of Ginkgo biloba seedling[J]. China Forestry Science and Technology, 2009, 23(6): 108−110. doi: 10.3969/j.issn.1000-8101.2009.06.030.
    [26]
    罗凡, 张厅, 龚雪蛟, 等. 不同施肥方式对茶树新梢氮磷钾含量及光合生理的影响[J]. 应用生态学报, 2014, 25(12):3499−3506.

    Luo F, Zhang T, Gong X J, et al. Effects of different fertilization ways on the contents of N, P, K in new shoots and photobiological characters of tea tree[J]. Chinese Journal of Applied Ecology, 2014, 25(12): 3499−3506.
    [27]
    杨腾, 马履一, 段劼, 等. 氮处理对文冠果幼苗光合、干物质积累和根系生长的影响[J]. 林业科学, 2014, 50(6):82−89.

    Yang T, Ma L Y, Duan J, et al. Effect of N application on photosynthesis, dry matter accumulation and root growth of Xanthoceras sorbifolia seedlings[J]. Scientia Silvae Sinicae, 2014, 50(6): 82−89.
    [28]
    Singh S K, Reddy V R, Fleisher D H, et al. Phosphorus nutrition affects temperature response of soybean growth and canopy photosynthesis[J/OL]. Frontiers in Plant Science, 2018, 9: 1116 (2018−08−06) [2019−04−15]. https://doi.org/10.3389/fpls.2018.01116.
    [29]
    王进斌, 谢军红, 李玲玲, 等. 氮肥运筹对陇中旱农区玉米光合特性及产量的影响[J]. 草业学报, 2019, 28(1):60−69. doi: 10.11686/cyxb2018096.

    Wang J B, Xie J H, Li L L, et al. Effects of nitrogen management on photosynthetic characteristics and yield of maize in arid areas of central Gansu, China[J]. Acta Prataculturae Sinica, 2019, 28(1): 60−69. doi: 10.11686/cyxb2018096.
    [30]
    汪顺义, 李欢, 刘庆, 等. 施钾对甘薯根系生长和产量的影响及其生理机制[J]. 作物学报, 2017, 43(7):1057−1066. doi: 10.3724/SP.J.1006.2017.01057.

    Wang S Y, Li H, Liu Q, et al. Effect of potassium application on root grow and yield of sweet potato and its physiological mechanism[J]. Acta Agronomica Sinica, 2017, 43(7): 1057−1066. doi: 10.3724/SP.J.1006.2017.01057.
    [31]
    陆燕元, 马焕成, 李昊民, 等. 土壤干旱对转基因甘薯光合曲线的响应[J]. 生态学报, 2015, 35(7):2155−2160.

    Lu Y Y, Ma H C, Li H M, et al. Light response characteristics of photosynthetic of transgenic sweet potato under drought stress[J]. Acta Ecologica Sinica, 2015, 35(7): 2155−2160.
  • Cited by

    Periodical cited type(10)

    1. 邹玉珍,曾庆伟,武红敢,郑仁高. 变色立木卫星影像样本特征分析及应用. 中国森林病虫. 2023(03): 1-8 .
    2. 焦全军,郑焰锋,黄文江,张兵,张鹤译,史宜梦,吴发云,付安民. 陆地生态系统碳监测卫星松材线虫病变色木识别指数研究. 林业资源管理. 2023(04): 123-131 .
    3. 曾庆伟,武红敢,张静,杨雅菲. 碳卫星在变色立木遥感监测中的应用潜力分析. 卫星应用. 2023(11): 20-25 .
    4. 李炜浩,张硕,刘梓航,苏旻,高浩然,刘善军. 基于光谱指数法的本溪市域红叶提取方法研究. 测绘与空间地理信息. 2022(04): 47-50 .
    5. 戴丽,周席华,罗治建,武红敢,陈亮. 湖北松材线虫病卫星遥感监管技术初探. 湖北林业科技. 2022(04): 60-64 .
    6. 孙红,曾庆伟. “高分七号”数据在松材线虫病松树样木监测中的应用. 林业科技通讯. 2022(09): 27-29 .
    7. 陶欢,李存军,程成,蒋丽雅,胡海棠. 松材线虫病变色松树遥感监测研究进展. 林业科学研究. 2020(03): 172-183 .
    8. 陶欢,李存军,谢春春,周静平,淮贺举,蒋丽雅,李凤涛. 基于HSV阈值法的无人机影像变色松树识别. 南京林业大学学报(自然科学版). 2019(03): 99-106 .
    9. 武红敢,牟晓伟,杨清钰,王成波. 无人机遥感技术在重庆市沙坪坝区松材线虫病监测中的应用. 林业资源管理. 2019(02): 109-115 .
    10. 武红敢,王成波,常原飞. 变色立木的无人机遥感监测技术. 中国森林病虫. 2019(04): 29-32+37 .

    Other cited types(4)

Catalog

    Article views (1826) PDF downloads (64) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return