Citation: | He Zhongsheng, Gu Xinguang, Jiang Lan, Xu Daowei, Liu Jinfu, Li Wenzhou, Chen Wenwei. Characteristics and its influencing factors of forest soil dominant bacterial community in different elevations on the southern slope of Daiyun Mountain, Fujian Province of eastern China[J]. Journal of Beijing Forestry University, 2022, 44(7): 107-116. DOI: 10.12171/j.1000-1522.20200278 |
[1] |
Young I M. Interactions and self-organization in the soil-microbe complex[J]. Science, 2004, 304: 1634−1637. doi: 10.1126/science.1097394
|
[2] |
蒋婧, 宋明华. 植物与土壤微生物在调控生态系统养分循环中的作用[J]. 植物生态学报, 2010, 34(8): 979−988. doi: 10.3773/j.issn.1005-264x.2010.08.011
Jiang J, Song M H. Review of the roles of plants and soil microorganisms in regulating ecosystem nutrient cycling[J]. Chinese Journal of Plant Ecology, 2010, 34(8): 979−988. doi: 10.3773/j.issn.1005-264x.2010.08.011
|
[3] |
王颖, 宗宁, 何念鹏, 等. 青藏高原高寒草甸不同海拔梯度下土壤微生物群落碳代谢多样性[J]. 生态学报, 2018, 38(16): 5837−5845.
Wang Y, Zong N, He N P, et al. Soil microbial functional diversity patterns and drivers along an elevation gradient on Qinghai-Tibet, China[J]. Acta Ecologica Sinica, 2018, 38(16): 5837−5845.
|
[4] |
Fierer N, Jackson R B. The diversity and biogeography of soil bacterial communities[J]. PNAS, 2006, 103(3): 626−631. doi: 10.1073/pnas.0507535103
|
[5] |
褚海燕, 冯毛毛, 柳旭, 等. 土壤微生物生物地理学: 国内进展与国际前沿[J]. 土壤学报, 2020, 57(3): 515−529.
Chu H Y, Feng M M, Liu X, et al. Soil microbial biogeography: recent advances in China and research frontiers in the world[J]. Acta Pedologica Sinica, 2020, 57(3): 515−529.
|
[6] |
方精云, 唐志尧. 植物物种多样性的垂直分布格局[J]. 生物多样性, 2004, 12(1): 20−28. doi: 10.3321/j.issn:1005-0094.2004.01.004
Fang J Y, Tang Z Y. A review on the elevational patterns of plant species diversity[J]. Biodiversity Science, 2004, 12(1): 20−28. doi: 10.3321/j.issn:1005-0094.2004.01.004
|
[7] |
潘红丽, 李迈和, 蔡小虎, 等. 海拔梯度上的植物生长与生理生态特性[J]. 生态环境学报, 2009, 18(2): 722−730. doi: 10.3969/j.issn.1674-5906.2009.02.059
Pan H L, Li M H, Cai X H, et al. Plant growth and physiological and ecological characteristics at altitude gradient[J]. Ecology and Environmental Sciences, 2009, 18(2): 722−730. doi: 10.3969/j.issn.1674-5906.2009.02.059
|
[8] |
Dharmesh S, Koichi T, Mincheol K, et al. A hump-backed trend in bacterial diversity with elevation on Mount Fuji, Japan[J]. Microbial Ecology, 2012, 63(2): 429−437. doi: 10.1007/s00248-011-9900-1
|
[9] |
Yang Y Y, Zhou Y, Shi Z, et al. Interactive effects of elevation and land use on soil bacterial communities in the Tibetan Plateau[J]. Pedosphere, 2020, 30(6): 817−831. doi: 10.1016/S1002-0160(19)60836-2
|
[10] |
Lin Y T, Chiu C Y. Elevation gradient of soil bacterial communities in bamboo plantations[J]. Botanical Studies, 2016, 57(1): 1−6.
|
[11] |
Li J B, Shen Z H, Li C N, et al. Stair-step pattern of soil bacterial diversity mainly driven by pH and vegetation types along the elevational gradients of Gongga Mountain, China[J]. Frontiers in Microbiology, 2018, 9: 569. doi: 10.3389/fmicb.2018.00569
|
[12] |
Nottingham A T, Fierer N, Turner B L, et al. Microbes follow Humboldt: temperature drives plant and soil microbial diversity patterns from the Amazon to the Andes[J]. Ecology, 2018, 99(11): 2455−2466. doi: 10.1002/ecy.2482
|
[13] |
Shen C C, Ni Y Y, Liang W J, et al. Distinct soil bacterial communities along a small-scale elevational gradient in alpine tundra[J]. Frontiers in Microbiology, 2015, 6: 582.
|
[14] |
Shen C C, Xiong J B, Zhang H Y, et al. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain[J]. Soil Biology and Biochemistry, 2013, 57: 204−211. doi: 10.1016/j.soilbio.2012.07.013
|
[15] |
刘秉儒, 张秀珍, 胡天华, 等. 贺兰山不同海拔典型植被带土壤微生物多样性[J]. 生态学报, 2013, 33(22): 7211−7220. doi: 10.5846/stxb201208061110
Liu B R, Zhang X Z, Hu T H, et al. Soil microbial diversity under typical vegetation zones along an elevation gradient in Helan Mountains[J]. Acta Ecologica Sinica, 2013, 33(22): 7211−7220. doi: 10.5846/stxb201208061110
|
[16] |
Fierer N, McCain C M, Meir P, et al. Microbes do not follow the elevational diversity patterns of plants and animals[J]. Ecology, 2011, 92(4): 797−804. doi: 10.1890/10-1170.1
|
[17] |
Jiang L, He Z S, Liu J F, et al. Elevation gradient altered soil C, N, and P stoichiometry of Pinus taiwanensis forest on Daiyun Mountain[J]. Forests, 2019, 10(12): 1089. doi: 10.3390/f10121089
|
[18] |
赵盼盼, 周嘉聪, 林开淼, 等. 海拔梯度变化对中亚热带黄山松土壤微生物生物量和群落结构的影响[J]. 生态学报, 2019, 39(6): 2215−2225.
Zhao P P, Zhou J C, Lin K M, et al. Effect of different altitudes on soil microbial biomass and community structure of Pinus taiwanensis forest in mid-subtropical zone[J]. Acta Ecologica Sinica, 2019, 39(6): 2215−2225.
|
[19] |
赵盼盼, 周嘉聪, 林开淼, 等. 不同海拔对福建戴云山黄山松林土壤微生物生物量和土壤酶活性的影响[J]. 生态学报, 2019, 39(8): 2676−2686.
Zhao P P, Zhou J C, Lin K M, et al. Effects of different altitudes on soil microbial biomass and enzyme activities in Pinus taiwanensis forests on Daiyun Mountain, Fujian Province[J]. Acta Ecologica Sinica, 2019, 39(8): 2676−2686.
|
[20] |
李梦佳, 何中声, 江蓝, 等. 海拔与土壤因子驱动了戴云山南坡森林树木多样性与系统发育多样性[J]. 生态学报, 2021, 41(3): 1148−1157.
Li M J, He Z S, Jiang L, et al. Distribution pattern and driving factors of species diversity and phylogenetic diversity along altitudinal gradient on the south slope of Daiyun Mountain[J]. Acta Ecologica Sinica, 2021, 41(3): 1148−1157.
|
[21] |
国家林业局. 森林土壤分析方法[M]. 北京: 中国标准出版社, 1999.
State Forestry Administration. Forest soil analysis method[M]. Beijing: China Standards Press, 1999.
|
[22] | |
[23] |
Hartman W H, Richardson C J, Rytas V, et al. Environmental and anthropogenic controls over bacterial communities in wetland soils[J]. PNAS, 2008, 105: 17842−17847. doi: 10.1073/pnas.0808254105
|
[24] |
Lundberg D S, Yourstone S, Mieczkowski P, et al. Practical innovations for high-throughput amplicon sequencing[J]. Nature Methods, 2013, 10: 999−1002. doi: 10.1038/nmeth.2634
|
[25] |
Edgar R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10: 996−998. doi: 10.1038/nmeth.2604
|
[26] |
Crawford P A, Crowley J R, Sambandam N, et al. Regulation of myocardial ketone body metabolism by the gut microbiota during nutrient deprivation[J]. PNAS, 2009, 106(27): 11276−11281. doi: 10.1073/pnas.0902366106
|
[27] |
Csárdi G, Nepusz T. The igraph software package for complex network research[J]. International Journal of Complex Systems, 2006, 1695(5): 1−9.
|
[28] |
李相楹, 张维勇, 刘峰, 等. 不同海拔高度下梵净山土壤碳、氮、磷分布特征[J]. 水土保持研究, 2016, 23(3): 19−24. doi: 10.13869/j.cnki.rswc.2016.03.004
Li X Y, Zhang W Y, Liu F, et al. The distribution characteristics of soil carbon, nitrogen and phosphorus at different altitudes in Fanjingshan Mountain[J]. Research of Soil and Water Conservation, 2016, 23(3): 19−24. doi: 10.13869/j.cnki.rswc.2016.03.004
|
[29] |
陈志芳, 刘金福, 吴则焰. 戴云山不同海拔森林类型土壤理化性质与酶活性研究[J]. 河南科技学院学报, 2014, 42(2): 10−14.
Chen Z F, Liu J F, Wu Z Y. Soil physico-chemical properties and enzyme activities at different elevation gradient forest type of Daiyun Mountain[J]. Journal of Henan Institute of Science and Technology, 2014, 42(2): 10−14.
|
[30] |
江蓝. 戴云山南坡木本植物功能性状海拔分布及其环境解释[D]. 福州: 福建农林大学, 2019.
Jiang L. The elevation distribution of woody plant functional traits and its environmental interpretation on south slope of Daiyun Mountain[D]. Fuzhou: Fujian Agriculture and Forestry University, 2019.
|
[31] |
邢 聪, 江蓝, 何中声, 等. 戴云山不同海拔黄山松群落的高度级结构研究[J]. 森林与环境学报, 2019, 39(4): 380−385.
Xing C, Jiang L, He Z S, et al. Height class structure of a Pinus taiwanensis community growing at different elevations on Daiyun Mountain[J]. Journal of Forest and Environment, 2019, 39(4): 380−385.
|
[32] |
王平, 任宾宾, 易超, 等. 轿子山自然保护区土壤理化性质垂直变异特征与环境因子关系[J]. 山地学报, 2013, 31(4): 456−463. doi: 10.3969/j.issn.1008-2786.2013.04.011
Wang P, Ren B B, Yi C, et al. The correlation between soil characteristics and environmental factors along altitude gradient of Jiaozi Mountain Nature Reserve[J]. Mountain Research, 2013, 31(4): 456−463. doi: 10.3969/j.issn.1008-2786.2013.04.011
|
[33] |
Wang J T, Cao P, Hu H W, et al. Altitudinal distribution patterns of soil bacterial and archaeal communities along Mt. Shegyla on the Tibetan Plateau[J]. Microbial Ecology, 2015, 69(1): 135−145. doi: 10.1007/s00248-014-0465-7
|
[34] |
Barns S M, Cain E C, Sommerville L. Acidobacteria phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum[J]. Applied and Environmental Microbiology, 2007, 73(9): 3113−3116. doi: 10.1128/AEM.02012-06
|
[35] |
Lü X F, Yu J B, Fu Y Q. A meta-analysis of the bacterial and archaeal diversity observed in wetland soils[J/OL]. The Scientific World Journal, 2014, 2014, 437684[2020−12−11]. https://doi.org/10.1155/2014/437684.
|
[36] |
李聪杰, 郝彦斌, 韩丛英. 土壤中微生物含量影响因素的统计方法分析[J]. 微生物学通报, 2016, 43(12): 2594−2600.
LI C J, Hao Y B, Han C Y. Statistical analysis of influencing factors of soil microbial content[J]. Microbiology China, 2016, 43(12): 2594−2600.
|
[37] |
乔沙沙, 周永娜, 刘晋仙, 等. 关帝山针叶林土壤细菌群落结构特征[J]. 林业科学, 2017, 53(2): 89−99. doi: 10.11707/j.1001-7488.20170211
Qiao S S, Zhou Y N, Liu J X, et al. Characteristics of soil bacterial community structure in coniferous forests of Guandi Mountains, Shanxi Province[J]. Scientia Silvae Sinicae, 2017, 53(2): 89−99. doi: 10.11707/j.1001-7488.20170211
|
[38] |
Zhang Y, Cong J, Lu H. Soil bacterial diversity patterns and drivers along an altitudinal gradient on Shennongjia Mountain, China[J]. Microbial Biotechnology, 2015, 8(4): 739−746. doi: 10.1111/1751-7915.12288
|
[39] |
Zimmermann M, Leifeld J, Conen F, et al. Can composition and physical protection of soil organic matter explain soil respiration temperature sensitivity?[J]. Biogeochemistry, 2012, 107(1−3): 423−436. doi: 10.1007/s10533-010-9562-y
|
[40] |
陈法霖, 郑华, 阳柏苏, 等. 中亚热带几种针、阔叶树种凋落物混合分解对土壤微生物群落碳代谢多样性的影响[J]. 生态学报, 2010, 31(11): 3027−3035.
Chen F L, Zheng H, Yang B S, et al. The decomposition of coniferous and broadleaf mixed litters significantly changes the carbon metabolism diversity of soil microbial communities in subtropical area, southern China[J]. Acta Ecologica Sinica, 2010, 31(11): 3027−3035.
|
[41] |
曾晓敏, 范跃新, 林开淼, 等. 亚热带不同海拔黄山松林土壤磷组分及微生物特征[J]. 生态学报, 2018, 38(18): 6570−6579.
Zeng X M, Fan Y X, Lin K M, et al. Characteristics of soil phosphorus fractions and microbial communities in Pinus taiwanensis Hayata forests at different altitudes in a subtropical region of China[J]. Acta Ecologica Sinica, 2018, 38(18): 6570−6579.
|
[42] |
Singh D, Lee-Cruz L, Kim W S, et al. Strong elevational trends in soil bacterial community composition on Mt. Halla, South Korea[J]. Soil Biology and Biochemistry, 2014, 68: 140−149. doi: 10.1016/j.soilbio.2013.09.027
|
[43] |
Lin Y T, Whitman W B, Coleman D C. Changes of soil bacterial communities in bamboo plantations at different elevations[J]. FEMS Microbiology Ecology, 2015, 91(5): 33−43.
|
[44] |
Landesman W J, Nelson D M, Fitzpatrick M C. Soil properties and tree species drive ß-diversity of soil bacterial communities[J]. Soil Biology and Biochemistry, 2014, 76: 201−209. doi: 10.1016/j.soilbio.2014.05.025
|
[45] |
Ramirez K S, Geisen S, Morriën E, et al. Network analyses can advance above-belowground ecology[J]. Trends in Plant Science, 2018, 23(9): 759−768. doi: 10.1016/j.tplants.2018.06.009
|
[46] |
Banerjee S, Walder F, Büchi L, et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots[J]. The ISME Journal, 2019(13): 1722−1736.
|
[47] |
Banerjee S, Schlaeppi K, van der Heijden M G A. Keystone taxa as drivers of microbiome structure and functioning[J]. Nature Reviews Microbiology, 2018(16): 567−576.
|
[48] |
Santolini M, Barabási A. Predicting perturbation patterns from the topology of biological networks[J]. PNAS, 2018, 115(27): E6375−E6383.
|
[49] |
Wang J Q, Shi X Z, Zheng C Y, et al. Different responses of soil bacterial and fungal communities to nitrogen deposition in a subtropical forest[J/OL]. Science of the Total Environment, 2021, 755(1): 142449[2021−08−15]. https://doi.org/10.1016/j.scitotenv.2020.142449.
|
[1] | He Xuegao, Liu Huan, Zhang Jing, Cheng Wei, Ding Peng, Jia Fengming, Li Qing, Liu Chao. Predicting potential suitable distribution areas for Juniperus przewalskii in Qinghai Province of northwestern China based on the optimized MaxEnt model[J]. Journal of Beijing Forestry University, 2023, 45(12): 19-31. DOI: 10.12171/j.1000-1522.20220515 |
[2] | Zhang Hanyue, Feng Zhongke, Huang Guosheng, Yang Xueqing, Feng Zemin. Research on the growth rate model of Populus spp. considering environmental factors[J]. Journal of Beijing Forestry University, 2022, 44(11): 50-59. DOI: 10.12171/j.1000-1522.20210201 |
[3] | Zhou Zhenghu, Liu Lin, Hou Lei. Soil organic carbon stabilization and formation: mechanism and model[J]. Journal of Beijing Forestry University, 2022, 44(10): 11-22. DOI: 10.12171/j.1000-1522.20220183 |
[4] | Wang Peng, Shang Shuaishuai, Guo Fan, Qiu Jingcong, Wang Xinqing, Wang Shiqi, Wang Chunmei. Analyzing the effects of freeze-thaw on dissolved organic matter in alpine peat wetland soil based on EEM-PARAFAC[J]. Journal of Beijing Forestry University, 2021, 43(11): 99-108. DOI: 10.12171/j.1000-1522.20210096 |
[5] | Ge Huishuo, Song Yuepeng, Su Xuehui, Zhang Deqiang, Zhang Xiaoyu. Optimal growth model of Populus simonii seedling combination based on Logistic and Gompertz models[J]. Journal of Beijing Forestry University, 2020, 42(5): 59-70. DOI: 10.12171/j.1000-1522.20190296 |
[6] | Cao Meng, Pan Ping, Ouyang Xunzhi, Zang Hao, Wu Zirong, Yang Yang, Zhan Changyan. Growth model of DBH and tree height for individual tree of natural secondary Phoebe bournei forest based on dummy variable[J]. Journal of Beijing Forestry University, 2019, 41(5): 88-96. DOI: 10.13332/j.1000-1522.20190026 |
[7] | ZHENG Dong-mei, ZENG Wei-sheng.. Using dummy variable approach to construct segmented aboveground biomass models for larch and oak in northeastern China.[J]. Journal of Beijing Forestry University, 2013, 35(6): 23-27. |
[8] | WANG Lei-hong, YANG Jun-xian, ZHENG Yu-hong, TANG Geng-guo. Modelling the geographic distribution of Malus baccata[J]. Journal of Beijing Forestry University, 2011, 33(3): 70-74. |
[9] | WANG Dan, WANG Bing, DAI Wei, LI Ping. Sensitivity analysis of variables correlated to soil organic matter in Chinese fir plantations[J]. Journal of Beijing Forestry University, 2011, 33(1): 78-83. |
[10] | YU Yun-shui, HE Wei-li, LI Li-jun, ZHAO Ren-jie. Optimal design of the mechanical properties of bamboo plywood form based on response surface model.[J]. Journal of Beijing Forestry University, 2009, 31(6): 103-107. |