• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wang Fuli, Wang Xianke, Zhou Jiashuo, Xie Hao, Xu Feiyang, Shao Zhuoping. Tensile properties and its variation pattern of bamboo parenchyma[J]. Journal of Beijing Forestry University, 2020, 42(11): 130-137. DOI: 10.12171/j.1000-1522.20200203
Citation: Wang Fuli, Wang Xianke, Zhou Jiashuo, Xie Hao, Xu Feiyang, Shao Zhuoping. Tensile properties and its variation pattern of bamboo parenchyma[J]. Journal of Beijing Forestry University, 2020, 42(11): 130-137. DOI: 10.12171/j.1000-1522.20200203

Tensile properties and its variation pattern of bamboo parenchyma

More Information
  • Received Date: July 01, 2020
  • Revised Date: September 13, 2020
  • Available Online: October 28, 2020
  • Published Date: December 13, 2020
  •   Objective  Bamboo is a kind of typical unidirectional long fiber reinforced composite material. The reinforcement phase is bamboo fiber, and the matrix is parenchyma. At present, there are few researches on the mechanical properties of bamboo parenchyma limited by its geometrical morphology, while its mechanical parameters do play important role in building fine numerical model of bamboo, especially the assignment of matrix attribute.
      Method  In this paper, 7 groups of bamboo parenchyma from different heights of culm were extracted by slicing, the slices with a thickness of 30 μm were used to geometrical morphology of parenchyma cells and the slice with a thickness of 80 μm was used to perform tensile tests. The variations of its geometrical morphology and tensile properties including tensile strength, tensile elastic modulus and failure strain in the height direction of bamboo culm were tested and studied.
      Result  The results showed that in the height direction of bamboo culm, geometrical morphology of bamboo parenchyma had no obvious variation pattern. The average tensile strength, tensile elastic modulus and failure strain of parenchyma were 13.08 MPa, 830.86 MPa and 1.98%, and all the three tensile parameters had no obvious variation pattern in the height direction of bamboo culm. The linear regression analysis results showed that there were low correlationship among parenchyma tensile properties and parenchyma cell geometrical morphology. Tensile failure mechanism of parenchyma was analyzed, and it was found that the tensile failure of parenchyma was the tensile failure of parenchyma cell interface and cell wall, thus the tensile strength of bamboo parenchyma here ranged from 13.08 to 34.82 MPa actually.
      Conclusion  The test method and results are all reliable, which could provide theoretical basis for the further study of mechanical properties of bamboo, especially for the numerical simulation of bamboo. However, deep study should be performed to improve the accuracy of test results, and the relationship between parenchyma mechanical properties and the variation pattern of parenchyma cell organization structure still need to be explored.
  • [1]
    江泽慧. 世界竹藤[M]. 沈阳: 辽宁科学技术出版社, 2000.

    Jiang Z H. Bamboo and rattan in the world[M]. Shenyang: Liaoning Science and Technology Publishing House, 2000.
    [2]
    Dixon P G, Gibson L J. The structure and mechanics of Moso bamboo material[J/OL]. Journal of the Royal Society Interface, 2014, 11: 20140321 [2020−01−27]. http://doi:10.1098/rsif.2014.0321" target="_blank">10.1098/rsif.2014.0321">http://doi:10.1098/rsif.2014.0321.
    [3]
    Ahvenainen P, Dixon P G, Kallonen A, et al. Spatially-localized bench-top X-ray scattering reveals tissue-specific microfibril orientation in Moso bamboo[J/OL]. Plant Methods, 2017, 13: 5 [2019−12−02]. https://link.springer.com/article/10.1186/s13007-016-0155-1.
    [4]
    Abe K, Yano H. Comparison of the characteristics of cellulose microfibril aggregates isolated from fiber and parenchyma cells of Moso bamboo (Phyllostachys pubescens)[J]. Cellulose, 2010, 17(2): 271−277. doi: 10.1007/s10570-009-9382-1.
    [5]
    杨云芳, 刘志坤. 毛竹材抗拉弹性模量及抗拉强度[J]. 浙江林学院学报, 1996, 13(1):21−27.

    Yang Y F, Liu Z K. Phyllostachys pubescens wood: tensile elastic modulus and tensile strength[J]. Journal of Zhejiang Forestry College, 1996, 13(1): 21−27.
    [6]
    黄盛霞, 马丽娜, 邵卓平, 等. 毛竹微观构造特征与力学性质关系的研究[J]. 安徽农业大学学报, 2005, 32(2):203−206. doi: 10.3969/j.issn.1672-352X.2005.02.017.

    Huang S X, Ma L N, Shao Z P, et al. Relationship between microstructure characteristics and mechanical properties of Moso bamboo[J]. Journal of Anhui Agricultural University, 2005, 32(2): 203−206. doi: 10.3969/j.issn.1672-352X.2005.02.017.
    [7]
    邵卓平. 植物材料断裂力学[M]. 北京: 科学出版社, 2012.

    Shao Z P. The fracture mechanics of plant material[M]. Beijing: Science Press, 2012.
    [8]
    Wu Y, Wang S Q, Zhou D G, et al. Evaluation of elastic modulus and hardness of crop stalks cell walls by nano-indentation[J/OL]. Bioresource Technology, 2010, 101: 2867−2871 [2019−12−06]. https://doi.org/10.1016/j.biortech.2009.10.074.
    [9]
    Huang Y H, Fei B H, Wei P L, et al. Mechanical properties of bamboo fiber cell walls during the culm development by nanoindentation[J]. Industrial Crops and Products, 2016, 92: 102−108. doi: 10.1016/j.indcrop.2016.07.037.
    [10]
    费本华. 木材细胞壁力学性能表征技术及应用[M]. 北京: 科学出版社, 2014.

    Fei B H. Characterization technique of mechanical properties of wood cell walls and its application[M]. Beijing: Science Press, 2014.
    [11]
    Gibson L J, Ashby M F, Harley B A. Cellular materials in nature and medicine[M]. Cambridge: Cambridge University Press, 2010.
    [12]
    Dixon P G, Muth J T, Xiao X, et al. 3D printed structures for modeling the Young’s modulus of bamboo parenchyma[J/OL]. Acta Biomaterialia, 2018, 68: 90−98 [2020−03−02]. https://doi.org/10.1016/j.actbio.2017.12.036.
    [13]
    Zhao X Y, Wang G N, Wang Y Z. Micromechanical modeling in determining the transverse elastic moduli and stress distributions of bamboo[J]. Journal of Materials Science, 2018, 53(4): 2553−2565. doi: 10.1007/s10853-017-1692-3.
    [14]
    Palombini F L, Kindlein W, De Oliveira B F, et al. Bionics and design: 3D microstructural characterization and numerical analysis of bamboo based on X-ray microtomography[J/OL]. Materials Characterization, 2016, 120: 357−368 [2020−02−02]. https://doi.org/10.1016/j.matchar.2016.09.022.
    [15]
    Palombini F L, Lautert E L, Mariath J E A, et al. Combining numerical models and discretizing methods in the analysis of bamboo parenchyma using finite element analysis based on X-ray microtomography[J]. Wood Science and Technology, 2020, 54(1): 161−186. doi: 10.1007/s00226-019-01146-4.
    [16]
    Askarinejad S, Kotowski P, Shalchy F, et al. Effects of humidity on shear behavior of bamboo[J]. Theoretical and Applied Mechanics Letters, 2015, 5(6): 236−243. doi: 10.1016/j.taml.2015.11.007.
    [17]
    李晓丽, 周斌雄, 张怡, 等. 基于共聚焦显微拉曼光谱的毛竹细胞结构和成分研究[J]. 光谱学与光谱分析, 2016, 36(2):413−418.

    Li X L, Zhou B X, Zhang Y, et al. Revealing the cell structure and formation of bamboo with confocal raman microscopy[J]. Spectroscopy and Spectral Analysis, 2016, 36(2): 413−418.
    [18]
    Habibi M K, Lu Y. Crack propagation in bamboo’s hierarchical cellular structure[J/OL]. Scientific Reports, 2014, 4: 5598 [2020−03−02]. https://doi.org/10.1038/srep05598.
  • Related Articles

    [1]Li Chengyu, Fang Jiaying, Wang Qihang, Zeng Lingshun, Mu Jun. Expansion pretreatment enhancing dye adsorption performance of cork biochar and its mechanism[J]. Journal of Beijing Forestry University, 2025, 47(2): 163-174. DOI: 10.12171/j.1000-1522.20240273
    [2]Yang Xin, Zhang Fangda, Huang Yanhui, Fei Benhua. Tensile and bending properties of radial slivers of Moso bamboo[J]. Journal of Beijing Forestry University, 2022, 44(3): 140-147. DOI: 10.12171/j.1000-1522.20210333
    [3]Li Jianlong, Chen Sheng, Li Haichao, Zhang Xun, Xu Duxin, Shi Menghua, Xu Feng. Relationship between cell wall ultrastructure and mechanical properties of balsa wood[J]. Journal of Beijing Forestry University, 2022, 44(2): 115-122. DOI: 10.12171/j.1000-1522.20210410
    [4]WANG Cui-cui, ZHANG Shuang-bao, XIAN Yu, WANG Dan-dan, GAO Jie, CHENG Hai-tao. Properties of plant fibers and their composites modified in situ with calcium carbonate[J]. Journal of Beijing Forestry University, 2016, 38(3): 95-101. DOI: 10.13332/j.1000-1522.20150297
    [5]GUO Kai-li, GAO Jia-rong, MA Lan, LIU Guo-hua, WANG Bing, YI Yang, WANG Shu, ZHANG Teng-fei. Distribution and tensile mechanical properties of Salix × aureo-pendula root system in soil bioengineering revetment[J]. Journal of Beijing Forestry University, 2015, 37(8): 90-96. DOI: 10.13332/j.1000-1522.20150022
    [6]DU Yu-liang, CHEN Ye, LIU Cai-hong, YIN Zeng-fang. Molecular regulation mechanism of vascular pattern formation in plant[J]. Journal of Beijing Forestry University, 2014, 36(3): 142-150. DOI: 10.13332/j.cnki.jbfu.2014.03.023
    [7]TIAN Gen-lin, JIANG Ze-hui, YU Yan, WANG Han-kun, AN Xiao-jing. Toughness mechanism of bamboo by insitu tension.[J]. Journal of Beijing Forestry University, 2012, 34(5): 144-147.
    [8]ZHANG Shuang-yan, FEI Ben-hua, YU Yan, CHENG Hai-tao, WANG Chuan-gui. Influence of lignin content on tensile properties of single wood fiber.[J]. Journal of Beijing Forestry University, 2012, 34(1): 131-134.
    [9]WANG Ge, CHEN Hong, YU Yan, CHENG Hai-tao, TIAN Gen-lin, CHEN Xiao-meng. Fine characterization techniques of physical and mechanical properties of bamboo fiber in cell level.[J]. Journal of Beijing Forestry University, 2011, 33(4): 143-148.
    [10]MENG Xi, WANG Ruo-han, XIE Lei, LONG Ru, MOU Shu-lin, ZHANG Zhi-xiang. Flowering dynamics and dichogamous mechanism in Magnolia grandiflora[J]. Journal of Beijing Forestry University, 2011, 33(4): 63-69.
  • Cited by

    Periodical cited type(13)

    1. 聂靖,陆驰,欧光龙,胥辉. 基于Landsat8 OLI遥感因子的思茅松地上生物量二阶抽样估测. 林业资源管理. 2022(06): 68-75 .
    2. 阳帆,白星雯. 森林资源监测地面固定样地优化研究. 林业资源管理. 2022(06): 76-81 .
    3. 王伟,杨净,高显连,曾伟生. 2020年全球森林资源评估遥感调查方法和思考. 林业资源管理. 2021(06): 1-5 .
    4. 曹飞,穆宝慧,徐丹,高乾,孙建欣,孙浩,孙中平. 遥感技术在环境变化监测中的应用进展. 环境与可持续发展. 2020(02): 96-99 .
    5. 辛成锋. 新一轮森林资源二类调查技术要点——以广东省茂名地区为例. 湖南林业科技. 2019(02): 72-76 .
    6. 马炜,张阳武,周天元,蒋亚芳. 基于空间抽样调查的宁夏全区和吴忠市湿地面积估测. 湿地科学. 2019(04): 384-390 .
    7. 刘谦,张煜星,王雪军,王少杰,杨英,I Nengah Suratijaya,Dewayany Sutrisno,Ita Carolita. 东南亚国家森林资源年度遥感监测设计——以印度尼西亚为例. 林业资源管理. 2018(03): 113-120 .
    8. 蒋仟,林辉,严恩萍,罗攀. 基于SPOT5遥感影像分类的抽样技术研究. 西南林业大学学报(自然科学). 2018(03): 145-150 .
    9. 陈宗铸,杨琦,雷金睿,陈小花,李苑菱. 基于激光雷达数据的热带森林冠高模型生成及平均树高估计. 中南林业科技大学学报. 2018(07): 1-7 .
    10. 张煜星,王雪军,黄国胜,党永峰,陈新云. 森林面积多阶遥感监测方法. 林业科学. 2017(07): 94-104 .
    11. 陆月报. 提高森林采伐调查设计精度和效率探讨. 农技服务. 2017(06): 93-94 .
    12. 葛宏立,孟源源. 森林面积不同抽样估计方法的无偏性及有效性分析与证明. 林业资源管理. 2016(04): 47-52 .
    13. 孟源源,葛宏立. 块状与带状森林的面积抽样估计计算机模拟. 林业资源管理. 2016(02): 49-55 .

    Other cited types(9)

Catalog

    Article views (1819) PDF downloads (67) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return