• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
ZHENG Dong-mei, ZENG Wei-sheng.. Using dummy variable approach to construct segmented aboveground biomass models for larch and oak in northeastern China.[J]. Journal of Beijing Forestry University, 2013, 35(6): 23-27.
Citation: ZHENG Dong-mei, ZENG Wei-sheng.. Using dummy variable approach to construct segmented aboveground biomass models for larch and oak in northeastern China.[J]. Journal of Beijing Forestry University, 2013, 35(6): 23-27.

Using dummy variable approach to construct segmented aboveground biomass models for larch and oak in northeastern China.

More Information
  • Received Date: December 31, 1899
  • Revised Date: December 31, 1899
  • Published Date: November 29, 2013
  • Using single nonlinear equation with constant parameters to simulate tree biomass may result in obvious biased estimation for small diameter class saplings. Based on the aboveground biomass data of larch and oak in northeastern China, an approach with dummy variable was presented which could improve the estimation of tree biomass, and one-and two-variable tree biomass models for the two tree species were constructed. The results showed that: 1) the approach not only was effective in solving the problem of biased estimation for small saplings, but also improved the prediction results of biomass model for all sample trees to some extent; 2) the constructed models were suitable for both saplings with diameter at breast height (DBH) less than 5 cm and trees with DBH more than 5 cm for biomass estimation of larch and oak trees in all kinds of forest inventory in northeastern China, and through the two-variable biomass models, the mean predicting error was all less than 5%.
  • Related Articles

    [1]Liu Sheng, Zhang Youxiang, Li Xiang, Tian Jiaxin, Wang Wanru. Application of pipe model and the theory of water transportation pattern through tree rings in larch productivity estimation[J]. Journal of Beijing Forestry University, 2021, 43(3): 18-26. DOI: 10.12171/j.1000-1522.20200117
    [2]Yao Dandan, Xu Qigang, Yan Xiaowang, Li Yutang. Individual-tree mortality model of Mongolian oak forests based on Bayesian method[J]. Journal of Beijing Forestry University, 2019, 41(9): 1-8. DOI: 10.13332/j.1000-1522.20180260
    [3]Zeng Jian, Zhang Xiaoli, Zhou Xuemei, Yin Tian. Extraction of topographic information of larch plantation by oblique photogrammetry[J]. Journal of Beijing Forestry University, 2019, 41(8): 1-12. DOI: 10.13332/j.1000-1522.20190126
    [4]Yan Wei, Duan Guangshuang, Wang Yihan, Sun Zhao, Zhou Taolong, Fu Liyong. Construction of stand basal area and volume growth model for Quercus and Populus in Henan Province of central China[J]. Journal of Beijing Forestry University, 2019, 41(6): 55-61. DOI: 10.13332/j.1000-1522.20180311
    [5]LI Yao-xiang, JIANG Li-chun. Modeling wood tracheid length based on nonlinear mixed model for dahurian larch[J]. Journal of Beijing Forestry University, 2013, 35(3): 18-23.
    [6]JIANG Li-chun, LIU Ming-yu, LIU Yin-bang. Variation of wood basic density and early selection of dahurian larch and Mongolian pine.[J]. Journal of Beijing Forestry University, 2013, 35(1): 1-6.
    [7]ZENG Wei-sheng, TANG Shou-zheng. Establishment of below-ground biomass equations for larch in northeastern and Masson pine in southern China[J]. Journal of Beijing Forestry University, 2011, 33(2): 1-6.
    [8]MA Wen-jun, WANG Jun-hui, ZHANG Shou-gong, SUN Xiao-mei, ZHAO Hai-xiang, NING Yan-long. Qualitative analysis of phenolic compounds in the Japanese larch during the rooting of cuttings[J]. Journal of Beijing Forestry University, 2011, 33(1): 150-154.
    [9]ZHAN Jian-feng, GU Ji-you, CAI Ying-chun.. Dynamic mechanosorptive characteristics of larch timber during conventional drying process.[J]. Journal of Beijing Forestry University, 2009, 31(2): 108-113.
    [10]ZHAN Jianfeng, GU Jiyou, CAI Yingchun.. Dynamic viscoelastic characteristics of larch timber during conventional drying process. [J]. Journal of Beijing Forestry University, 2009, 31(1): 125-129.
  • Cited by

    Periodical cited type(13)

    1. 吕乐乐,王文彬,董灵波. 基于哑变量和分位数回归的兴安落叶松更新幼树的树高-胸径模型. 应用生态学报. 2023(09): 2355-2362 .
    2. 曾伟生,孙乡楠,王六如,王威,蒲莹. 基于激光雷达数据的东北林区航空林分材积表编制. 林业资源管理. 2021(01): 147-155 .
    3. 曾伟生,孙乡楠,王六如,王威,蒲莹. 基于机载激光雷达数据的森林蓄积量模型研建. 林业科学. 2021(02): 31-38 .
    4. 张冬燕,王冬至,李晓,高雨珊,李天宇,陈静. 基于分位数回归的针阔混交林树高与胸径的关系. 浙江农林大学学报. 2020(03): 424-431 .
    5. 张伟志,吴宏炜,黄光灿,田意,庄崇洋,江希钿. 基于哑变量的木荷人工林树皮厚度模型研究. 热带作物学报. 2020(12): 2562-2570 .
    6. 曾伟生,陈新云,杨学云. 内蒙古主要树种组立木胸径生长率模型研建. 林业资源管理. 2018(02): 38-42+110 .
    7. 刘薇祎,邓华锋,黄国胜,王雪军,张璐. 云南松不同区域相容性生物量模型的构建. 西北农林科技大学学报(自然科学版). 2018(07): 7-14 .
    8. 吕常笑,邓华锋,王秋鸟,陈振雄,王雪军. 基于哑变量的马尾松生物量模型研究. 河南农业大学学报. 2016(03): 304-310 .
    9. 冉啟香,邓华锋,吕常笑,王雪军,张璐. 油松林分断面积与蓄积量生长模型研究. 西北林学院学报. 2016(05): 217-223 .
    10. 季蕾,亢新刚,张青,郭韦韦,周梦丽. 吉林金沟岭林场不同密度天然云冷杉林林下主要灌木生物量模型. 浙江农林大学学报. 2016(03): 394-402 .
    11. 冉启香,邓华锋,黄国胜,王雪军,陈振雄. 云南松地上生物量模型研究. 浙江农林大学学报. 2016(04): 605-611 .
    12. 杨英,冉啟香,陈新云,欧强新. 哑变量在云杉地上生物量模型中的应用研究. 林业资源管理. 2015(06): 71-76 .
    13. 杜鹏志,薛康,曾伟生,冯仲科,曹忠. 北京杨树相容性立木材积系列模型研建. 林业资源管理. 2014(05): 51-57+114 .

    Other cited types(7)

Catalog

    Article views (1407) PDF downloads (190) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return