Citation: | Zhou Zhenghu, Liu Lin, Hou Lei. Soil organic carbon stabilization and formation: mechanism and model[J]. Journal of Beijing Forestry University, 2022, 44(10): 11-22. DOI: 10.12171/j.1000-1522.20220183 |
[1] |
Wiesmeier M, Urbanski L, Hobley E, et al. Soil organic carbon storage as a key function of soils-a review of drivers and indicators at various scales[J]. Geoderma, 2019, 333: 149−162. doi: 10.1016/j.geoderma.2018.07.026
|
[2] |
Wall D H, Nielsen U N, Six J. Soil biodiversity and human health[J]. Nature, 2015, 528: 69−76. doi: 10.1038/nature15744
|
[3] |
Schmidt M W I, Torn M S, Abiven S, et al. Persistence of soil organic matter as an ecosystem property[J]. Nature, 2011, 478: 49−56. doi: 10.1038/nature10386
|
[4] |
Li X G, Li F M, Zed R, et al. Soil physical properties and their relations to organic carbon pools as affected by land use in an alpine pastureland[J]. Geoderma, 2007, 139(1−2): 98−105.
|
[5] |
Tiessen H, Cuevas E, Chacon P. The role of soil organic matter in sustaining soil fertility[J]. Nature, 1994, 371: 783−785. doi: 10.1038/371783a0
|
[6] |
O’rourke S M, Angers D A, Holden N M, et al. Soil organic carbon across scales[J]. Global Change Biology, 2015, 21(10): 3561−3574. doi: 10.1111/gcb.12959
|
[7] |
Laban P, Metternicht G, Davies J. Soil biodiversity and soil organic carbon: keeping drylands alive[M]. Gland: IUCN, 2018.
|
[8] |
Batjes N H. Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks[J]. Geoderma, 2016, 269: 61−68. doi: 10.1016/j.geoderma.2016.01.034
|
[9] |
Bossio D A, Cook-Patton S C, Ellis P W, et al. The role of soil carbon in natural climate solutions[J]. Nature Sustainability, 2020, 3(5): 391−398. doi: 10.1038/s41893-020-0491-z
|
[10] |
Beillouin D, Cardinael R, Berre D, et al. A global overview of studies about land management, land-use change, and climate change effects on soil organic carbon[J]. Global Change Biology, 2022, 28(4): 1690−1702. doi: 10.1111/gcb.15998
|
[11] |
Sollins P, Homann P, Caldwell B A. Stabilization and destabilization of soil organic matter: mechanisms and controls[J]. Geoderma, 1996, 74(1−2): 65−105. doi: 10.1016/S0016-7061(96)00036-5
|
[12] |
Grigatti M, Perez M D, Blok W J, et al. A standardized method for the determination of the intrinsic carbon and nitrogen mineralization capacity of natural organic matter sources[J]. Soil Biology and Biochemistry, 2007, 39(7): 1493−1503. doi: 10.1016/j.soilbio.2006.12.035
|
[13] |
Feng W T, Shi Z, Jiang J, et al. Methodological uncertainty in estimating carbon turnover times of soil fractions[J]. Soil Biology and Biochemistry, 2016, 100: 118−124. doi: 10.1016/j.soilbio.2016.06.003
|
[14] |
von Lützow M, Kogel-Knabner I, Ekschmitt K, et al. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions: a review[J]. European Journal of Soil Science, 2006, 57(4): 426−445. doi: 10.1111/j.1365-2389.2006.00809.x
|
[15] |
Mayer L M. The inertness of being organic[J]. Marine Chemistry, 2004, 92(1−4): 135−140. doi: 10.1016/j.marchem.2004.06.022
|
[16] |
Sokol N W, Sanderman J, Bradford M A. Pathways of mineral-associated soil organic matter formation: integrating the role of plant carbon source, chemistry, and point of entry[J]. Global Change Biology, 2019, 25(1): 12−24. doi: 10.1111/gcb.14482
|
[17] |
Lavallee J M, Soong J L, Cotrufo M F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century[J]. Global Change Biology, 2020, 26(1): 261−273. doi: 10.1111/gcb.14859
|
[18] |
Lugato E, Lavallee J M, Haddix M L, et al. Different climate sensitivity of particulate and mineral-associated soil organic matter[J]. Nature Geoscience, 2021, 14(5): 295−300. doi: 10.1038/s41561-021-00744-x
|
[19] |
Angst G, Mueller K E, Nierop K G J, et al. Plant- or microbial-derived? a review on the molecular composition of stabilized soil organic matter[J]. Soil Biology and Biochemistry, 2021, 156: 108189. doi: 10.1016/j.soilbio.2021.108189
|
[20] |
Lehmann J, Hansel C M, Kaiser C, et al. Persistence of soil organic carbon caused by functional complexity[J]. Nature Geoscience, 2020, 13(8): 529−534. doi: 10.1038/s41561-020-0612-3
|
[21] |
Han L F, Sun K, Jin J, et al. Some concepts of soil organic carbon characteristics and mineral interaction from a review of literature[J]. Soil Biology and Biochemistry, 2016, 94: 107−121. doi: 10.1016/j.soilbio.2015.11.023
|
[22] |
Feng X J, Simpson M J. The distribution and degradation of biomarkers in Alberta grassland soil profiles[J]. Organic Geochemistry, 2007, 38(9): 1558−1570. doi: 10.1016/j.orggeochem.2007.05.001
|
[23] |
Lehmann J, Kleber M. The contentious nature of soil organic matter[J]. Nature, 2015, 528: 60−68. doi: 10.1038/nature16069
|
[24] |
Melillo J M, Aber J D, Muratore J F. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics[J]. Ecology, 1982, 63(3): 621−626. doi: 10.2307/1936780
|
[25] |
Otto A, Simpson M J. Degradation and preservation of vascular plant–derived biomarkers in grassland and forest soils from Western Canada[J]. Biogeochemistry, 2005, 74(3): 377−409. doi: 10.1007/s10533-004-5834-8
|
[26] |
Otto A, Simpson M J. Sources and composition of hydrolysable aliphatic lipids and phenols in soils from western Canada[J]. Organic Geochemistry, 2006, 37(4): 385−407. doi: 10.1016/j.orggeochem.2005.12.011
|
[27] |
Amelung W. Methods using amino sugars as markers for microbial residues in soil[M]//Assessment methods for soil carbon. Boca Raton: Lewis Publishers, 2001.
|
[28] |
Gunina A, Kuzyakov Y. From energy to (soil organic) matter[J]. Global Change Biology, 2022, 28(7): 2169−2182. doi: 10.1111/gcb.16071
|
[29] |
Wattel-Koekkoek E J W, Buurman P, van der Plicht J, et al. Mean residence time of soil organic matter associated with kaolinite and smectite[J]. European Journal of Soil Science, 2003, 54(2): 269−278. doi: 10.1046/j.1365-2389.2003.00512.x
|
[30] |
Kleber M, Bourg I C, Coward E K, et al. Dynamic interactions at the mineral-organic matter interface[J]. Nature Reviews Earth and Environment, 2021, 2(6): 402−421. doi: 10.1038/s43017-021-00162-y
|
[31] |
del Nero M, Galindo C, Bucher G, et al. Speciation of oxalate at corundum colloid-solution interfaces and its effect on colloid aggregation under conditions relevant to freshwaters[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 418: 165−173.
|
[32] |
Kunhi M Y, Kučerík J, Diehl D, et al. Cation-mediated cross-linking in natural organic matter: a review[J]. Reviews in Environmental Science and Bio/technology, 2012, 11(1): 41−54. doi: 10.1007/s11157-011-9258-3
|
[33] |
Keiluweit M, Kleber M. Molecular-level interactions in soils and sediments: the role of aromatic π-systems[J]. Environmental Science and Technology, 2009, 43(10): 3421−3429. doi: 10.1021/es8033044
|
[34] |
Wilpiszeski R L, Aufrecht J A, Retterer S T, et al. Soil aggregate microbial communities: towards understanding microbiome interactions at biologically relevant scales[J]. Applied and Environmental Microbiology, 2019, 85(14): e00324−19.
|
[35] |
Schlüter S, Leuther F, Albrecht L, et al. Microscale carbon distribution around pores and particulate organic matter varies with soil moisture regime[J]. Nature Communications, 2022, 13(1): 1−14. doi: 10.1038/s41467-021-27699-2
|
[36] |
Witzgall K, Vidal A, Schubert D I, et al. Particulate organic matter as a functional soil component for persistent soil organic carbon[J]. Nature Communications, 2021, 12(1): 4115. doi: 10.1038/s41467-021-24192-8
|
[37] |
Ni J, Pignatello J J. Charge-assisted hydrogen bonding as a cohesive force in soil organic matter: water solubility enhancement by addition of simple carboxylic acids[J]. Environmental Science: Processes and Impacts, 2018, 20(9): 1225−1233. doi: 10.1039/C8EM00255J
|
[38] |
Rowley M C, Grand S, Verrecchia É P. Calcium-mediated stabilisation of soil organic carbon[J]. Biogeochemistry, 2018, 137(1): 27−49.
|
[39] |
Totsche K U, Amelung W, Gerzabek M H, et al. Microaggregates in soils[J]. Journal of Plant Nutrition and Soil Science, 2018, 181(1): 104−136. doi: 10.1002/jpln.201600451
|
[40] |
Kaiser K, Guggenberger G. Sorptive stabilization of organic matter by microporous goethite: sorption into small pores vs. surface complexation[J]. European Journal of Soil Science, 2007, 58(1): 45−59. doi: 10.1111/j.1365-2389.2006.00799.x
|
[41] |
Mayer L M, Schick L L, Hardy K R, et al. Organic matter in small mesopores in sediments and soils[J]. Geochimica et Cosmochimica Acta, 2004, 68(19): 3863−3872. doi: 10.1016/j.gca.2004.03.019
|
[42] |
Mayer L M. Surface area control of organic carbon accumulation in continental shelf sediments[J]. Geochimica et Cosmochimica Acta, 1994, 58(4): 1271−1284. doi: 10.1016/0016-7037(94)90381-6
|
[43] |
刘红梅, 李睿颖, 高晶晶, 等. 保护性耕作对土壤团聚体及微生物学特性的影响研究进展[J]. 生态环境学报, 2020, 29(6): 1277−1284. doi: 10.16258/j.cnki.1674-5906.2020.06.025
Liu H M, Li R Y, Gao J J, et al. Research progress on the effects of conservation tillage on soil aggregates and microbiological characteristics[J]. Ecology and Environmental Sciences, 2020, 29(6): 1277−1284. doi: 10.16258/j.cnki.1674-5906.2020.06.025
|
[44] |
Ranjard L, Poly F, Combrisson J, et al. Heterogeneous cell density and genetic structure of bacterial pools associated with various soil microenvironments as determined by enumeration and DNA fingerprinting approach (RISA)[J]. Microbial Ecology, 2000, 39(4): 263−272.
|
[45] |
Young I M, Crawford J W. Interactions and self-organization in the soil-microbe complex[J]. Science, 2004, 304: 1634−1637. doi: 10.1126/science.1097394
|
[46] |
Barreto R C, Madari B E, Maddock J E L, et al. The impact of soil management on aggregation, carbon stabilization and carbon loss as CO2 in the surface layer of a Rhodic Ferralsol in Southern Brazil[J]. Agriculture, Ecosystems and Environment, 2009, 132(3−4): 243−251. doi: 10.1016/j.agee.2009.04.008
|
[47] |
Sexstone A J, Revsbech N P, Parkin T B, et al. Direct measurement of oxygen profiles and denitrification rates in soil aggregates[J]. Soil Science Society of America Journal, 1985, 49(3): 645−651. doi: 10.2136/sssaj1985.03615995004900030024x
|
[48] |
Wang B, An S, Liang C, et al. Microbial necromass as the source of soil organic carbon in global ecosystems[J]. Soil Biology and Biochemistry, 2021, 162: 108422. doi: 10.1016/j.soilbio.2021.108422
|
[49] |
Cotrufo M F, Wallenstein M D, Boot C M, et al. The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?[J]. Global Change Biology, 2013, 19(4): 988−995. doi: 10.1111/gcb.12113
|
[50] |
Liang C, Schimel J P, Jastrow J D. The importance of anabolism in microbial control over soil carbon storage[J]. Nature Microbiology, 2017, 2: 17105. doi: 10.1038/nmicrobiol.2017.105
|
[51] |
Castellano M J, Mueller K E, Olk D C, et al. Integrating plant litter quality, soil organic matter stabilization, and the carbon saturation concept[J]. Global Change Biology, 2015, 21(9): 3200−3209. doi: 10.1111/gcb.12982
|
[52] |
Hedges J I, Oades J M. Comparative organic geochemistries of soils and marine sediments[J]. Organic Geochemistry, 1997, 27(7−8): 319−361. doi: 10.1016/S0146-6380(97)00056-9
|
[53] |
Fan X, Gao D, Zhao C, et al. Improved model simulation of soil carbon cycling by representing the microbially derived organic carbon pool[J]. The ISME Journal, 2021, 15(8): 2248−2263. doi: 10.1038/s41396-021-00914-0
|
[54] |
Schimel J P, Weintraub M N. The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model[J]. Soil Biology and Biochemistry, 2003, 35(4): 549−563. doi: 10.1016/S0038-0717(03)00015-4
|
[55] |
Jiao N, Herndl G J, Hansell D A, et al. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean[J]. Nature Reviews Microbiology, 2010, 8: 593−599. doi: 10.1038/nrmicro2386
|
[56] |
Jiao N, Herndl G J, Hansell D A, et al. The microbial carbon pump and the oceanic recalcitrant dissolved organic matter pool[J]. Nature Reviews Microbiology, 2011, 9: 555.
|
[57] |
Lu W, Luo Y, Yan X, et al. Modeling the contribution of the microbial carbon pump to carbon sequestration in the South China Sea[J]. Science China Earth Sciences, 2018, 61(11): 1594−1604. doi: 10.1007/s11430-017-9180-y
|
[58] |
梁超, 朱雪峰. 土壤微生物碳泵储碳机制概论[J]. 中国科学: 地球科学, 2021, 51(5): 680−695.
Liang C, Zhu X F. The soil microbial carbon pump as a new concept for terrestrial carbon sequestration[J]. Science China Earth Sciences, 2021, 51(5): 680−695.
|
[59] |
胡慧蓉, 马焕成, 罗承德, 等. 森林土壤有机碳分组及其测定方法[J]. 土壤通报, 2010, 41(4): 1018−1024. doi: 10.19336/j.cnki.trtb.2010.04.049
Hu H R, Ma H C, Luo C D, et al. Forest soil organic carbon fraction and its measure methods[J]. Chinese Journal of Soil Science, 2010, 41(4): 1018−1024. doi: 10.19336/j.cnki.trtb.2010.04.049
|
[60] |
Bailey V L, Bond-Lamberty B, de Angelis K, et al. Soil carbon cycling proxies: understanding their critical role in predicting climate change feedbacks[J]. Global Change Biology, 2018, 24(3): 895−905. doi: 10.1111/gcb.13926
|
[61] |
张丽敏, 徐明岗, 娄翼来, 等. 土壤有机碳分组方法概述[J]. 中国土壤与肥料, 2014(4): 1−6. doi: 10.11838/sfsc.20140401
Zhang L M, Xu M G, Lou Y L, et al. Soil organic carbon fractionation methods[J]. Soil and Fertilizer Sciences in China, 2014(4): 1−6. doi: 10.11838/sfsc.20140401
|
[62] |
张国, 曹志平, 胡婵娟. 土壤有机碳分组方法及其在农田生态系统研究中的应用[J]. 应用生态学报, 2011, 22(7): 1921−1930. doi: 10.13287/j.1001-9332.2011.0264
Zhang G, Cao Z P, Hu C J. Soil organic carbon fractionation methods and their applications in farmland ecosystem research: a review[J]. Chinese Journal of Applied Ecology, 2011, 22(7): 1921−1930. doi: 10.13287/j.1001-9332.2011.0264
|
[63] |
Cotrufo M F, Ranalli M G, Haddix M L, et al. Soil carbon storage informed by particulate and mineral-associated organic matter[J]. Nature Geoscience, 2019, 12: 989−994. doi: 10.1038/s41561-019-0484-6
|
[64] |
Sokol N W, Whalen E D, Jilling A, et al. Global distribution, formation and fate of mineral-associated soil organic matter under a changing climate: a trait-based perspective[J]. Functional Ecology, 2022, 36(6): 1411−1429. doi: 10.1111/1365-2435.14040
|
[65] |
Luo Y, Schuur E A G. Model parameterization to represent processes at unresolved scales and changing properties of evolving systems[J]. Global Change Biology, 2020, 26(3): 1109−1117. doi: 10.1111/gcb.14939
|
[66] |
Todd-Brown K E O, Randerson J T, Post W M, et al. Causes of variation in soil carbon simulations from CMIP5 earth system models and comparison with observations[J]. Biogeosciences, 2013, 10(3): 1717−1736. doi: 10.5194/bg-10-1717-2013
|
[67] |
Todd-Brown K E O, Randerson J T, Hopkins F, et al. Changes in soil organic carbon storage predicted by earth system models during the 21st century[J]. Biogeosciences, 2014, 11(8): 2341−2356. doi: 10.5194/bg-11-2341-2014
|
[68] |
Shi Z, Crowell S, Luo Y, et al. Model structures amplify uncertainty in predicted soil carbon responses to climate change[J]. Nature Communications, 2018, 9(1): 2171. doi: 10.1038/s41467-018-04526-9
|
[69] |
Parton W J, Schimel D S, Cole C V, et al. Analysis of factors controlling soil organic matter levels in Great Plains grasslands[J]. Soil Science Society of America Journal, 1987, 51(5): 1173−1179. doi: 10.2136/sssaj1987.03615995005100050015x
|
[70] |
Lawrence D M, Fisher R A, Koven C D, et al. The community land model version 5: description of new features, benchmarking, and impact of forcing uncertainty[J]. Journal of Advances in Modeling Earth Systems, 2019, 11(12): 4245−4287. doi: 10.1029/2018MS001583
|
[71] |
Liang J, Xia J, Shi Z, et al. Biotic responses buffer warming-induced soil organic carbon loss in Arctic tundra[J]. Global Change Biology, 2018, 24(10): 4946−4959. doi: 10.1111/gcb.14325
|
[72] |
Wang Y P, Law R M, Pak B. A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere[J]. Biogeosciences, 2010, 7(7): 2261−2282. doi: 10.5194/bg-7-2261-2010
|
[73] |
Wieder W R, Bonan G B, Allison S D. Global soil carbon projections are improved by modelling microbial processes[J]. Nature Climate Change, 2013, 3(10): 909−912. doi: 10.1038/nclimate1951
|
[74] |
Allison S D, Wallenstein M D, Bradford M A. Soil-carbon response to warming dependent on microbial physiology[J]. Nature Geoscience, 2010, 3(5): 336−340. doi: 10.1038/ngeo846
|
[75] |
Abramoff R Z, Guenet B, Zhang H, et al. Improved global-scale predictions of soil carbon stocks with Millennial Version 2[J]. Soil Biology and Biochemistry, 2022, 164: 108466. doi: 10.1016/j.soilbio.2021.108466
|
[76] |
Six J, Guggenberger G, Paustian K, et al. Sources and composition of soil organic matter fractions between and within soil aggregates[J]. European Journal of Soil Science, 2001, 52(4): 607−618. doi: 10.1046/j.1365-2389.2001.00406.x
|
[77] |
Ahrens B, Braakhekke M C, Guggenberger G, et al. Contribution of sorption, DOC transport and microbial interactions to the 14C age of a soil organic carbon profile: insights from a calibrated process model[J]. Soil Biology and Biochemistry, 2015, 88: 390−402. doi: 10.1016/j.soilbio.2015.06.008
|
[78] |
Benbi D K, Boparai A K, Brar K. Decomposition of particulate organic matter is more sensitive to temperature than the mineral associated organic matter[J]. Soil Biology and Biochemistry, 2014, 70: 183−192. doi: 10.1016/j.soilbio.2013.12.032
|
[79] |
Jobbágy E G, Jackson R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation[J]. Ecological Applications, 2000, 10(2): 423−436. doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
|
[80] |
Koven C D, Riley W J, Subin Z M, et al. The effect of vertically resolved soil biogeochemistry and alternate soil C and N models on C dynamics of CLM4[J]. Biogeosciences, 2013, 10(11): 7109−7131. doi: 10.5194/bg-10-7109-2013
|
[81] |
Wieder W R, Grandy A S, Kallenbach C M, et al. Representing life in the earth system with soil microbial functional traits in the MIMICS model[J]. Geoscientific Model Development, 2015, 8(6): 1789−1808. doi: 10.5194/gmd-8-1789-2015
|
[82] |
Huang Y, Lu X, Shi Z, et al. Matrix approach to land carbon cycle modeling: a case study with the Community Land Model[J]. Global Change Biology, 2018, 24(3): 1394−1404. doi: 10.1111/gcb.13948
|
[83] |
Angst G, Mueller K E, Eissenstat D M, et al. Soil organic carbon stability in forests: distinct effects of tree species identity and traits[J]. Global Change Biology, 2019, 25(4): 1529−1546. doi: 10.1111/gcb.14548
|
[84] |
Samson M É, Chantigny M H, Vanasse A, et al. Coarse mineral-associated organic matter is a pivotal fraction for SOM formation and is sensitive to the quality of organic inputs[J]. Soil Biology and Biochemistry, 2020, 149: 107935. doi: 10.1016/j.soilbio.2020.107935
|
[85] |
Wiseman C L S, Püttmann W. Interactions between mineral phases in the preservation of soil organic matter[J]. Geoderma, 2006, 134(1−2): 109−118. doi: 10.1016/j.geoderma.2005.09.001
|
[86] |
Stewart C E, Plante A F, Paustian K, et al. Soil carbon saturation: linking concept and measurable carbon pools[J]. Soil Science Society of America Journal, 2008, 72(2): 379−392. doi: 10.2136/sssaj2007.0104
|
[87] |
Stewart C E, Paustian K, Conant R T, et al. Soil carbon saturation: implications for measurable carbon pool dynamics in long-term incubations[J]. Soil Biology and Biochemistry, 2009, 41(2): 357−366. doi: 10.1016/j.soilbio.2008.11.011
|
[88] |
Xia M, Talhelm A F, Pregitzer K S. Fine roots are the dominant source of recalcitrant plant litter in sugar maple-dominated northern hardwood forests[J]. New Phytologist, 2015, 208(3): 715−726. doi: 10.1111/nph.13494
|
[89] |
Farrar J, Hawes M, Jones D, et al. How roots control the flux of carbon to the rhizosphere[J]. Ecology, 2003, 84(4): 827−837. doi: 10.1890/0012-9658(2003)084[0827:HRCTFO]2.0.CO;2
|
[90] |
Toljander J F, Lindahl B D, Paul L R, et al. Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure[J]. FEMS Microbiology Ecology, 2007, 61(2): 295−304. doi: 10.1111/j.1574-6941.2007.00337.x
|
[91] |
Frey S D. Mycorrhizal fungi as mediators of soil organic matter dynamics[J]. Annual Review of Ecology, Evolution, and Systematics, 2019, 50: 237−259. doi: 10.1146/annurev-ecolsys-110617-062331
|
[92] |
Vranova V, Rejsek K, Skene K R, et al. Methods of collection of plant root exudates in relation to plant metabolism and purpose: a review[J]. Journal of Plant Nutrition and Soil Science, 2013, 176(2): 175−199. doi: 10.1002/jpln.201000360
|
[93] |
Sokol N W, Kuebbing S E, Karlsen-Ayala E, et al. Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon[J]. New Phytologist, 2019, 221(1): 233−246. doi: 10.1111/nph.15361
|
[94] |
Dijkstra F A, Zhu B, Cheng W. Root effects on soil organic carbon: a double-edged sword[J]. New Phytologist, 2021, 230(1): 60−65. doi: 10.1111/nph.17082
|
[95] |
Calvo O C, Franzaring J, Schmid I, et al. Atmospheric CO2 enrichment and drought stress modify root exudation of barley[J]. Global Change Biology, 2017, 23(3): 1292−1304. doi: 10.1111/gcb.13503
|
[96] |
Song J, Wan S, Piao S, et al. A meta-analysis of 1, 119 manipulative experiments on terrestrial carbon-cycling responses to global change[J]. Nature Ecology and Evolution, 2019, 3(9): 1309−1320. doi: 10.1038/s41559-019-0958-3
|
[97] |
周艳翔, 吕茂奎, 谢锦升, 等. 深层土壤有机碳的来源、特征与稳定性[J]. 亚热带资源与环境学报, 2013, 8(1): 48−55. doi: 10.3969/j.issn.1673-7105.2013.01.009
Zhou Y X, Lü M K, Xie J S, et al. Sources, characteristics and stability of organic carbon in deep soil[J]. Journal of Subtropical Resources and Environment, 2013, 8(1): 48−55. doi: 10.3969/j.issn.1673-7105.2013.01.009
|
[98] |
Soong J L, Castanha C, Hicks P C E, et al. Five years of whole-soil warming led to loss of subsoil carbon stocks and increased CO2 efflux[J]. Science Advances, 2021, 7(21): eabd1343. doi: 10.1126/sciadv.abd1343
|
[99] |
Li J, Pei J, Pendall E, et al. Rising temperature may trigger deep soil carbon loss across forest ecosystems[J]. Advanced Science, 2020, 7(19): 2001242. doi: 10.1002/advs.202001242
|
[100] |
Kramer M G, Chadwick O A. Climate-driven thresholds in reactive mineral retention of soil carbon at the global scale[J]. Nature Climate Change, 2018, 8(12): 1104−1108. doi: 10.1038/s41558-018-0341-4
|
[101] |
Fontaine S, Barot S, Barré P, et al. Stability of organic carbon in deep soil layers controlled by fresh carbon supply[J]. Nature, 2007, 450: 277−280. doi: 10.1038/nature06275
|
[102] |
Tang J, Riley W J. Weaker soil carbon-climate feedbacks resulting from microbial and abiotic interactions[J]. Nature Climate Change, 2015, 5(1): 56−60. doi: 10.1038/nclimate2438
|
[103] |
Opfergelt S. The next generation of climate model should account for the evolution of mineral-organic interactions with permafrost thaw[J]. Environmental Research Letters, 2020, 15(9): 091003. doi: 10.1088/1748-9326/ab9a6d
|
1. |
栗世博,赖巧巧,屈峰. 森林“四库”研究的热点、前沿和动态. 林业经济问题. 2025(01): 41-51 .
![]() | |
2. |
李子辉,张亚,巴永,陈伟志,董春凤,杨梦娇,文方平. 云南省植被固碳能力与产水、土壤保持服务冷热点识别. 中国环境科学. 2024(02): 1007-1019 .
![]() | |
3. |
傅乐乐,苏建兰,张凯迪. 云南省经济林碳汇测算及其产品开发探析. 现代农业研究. 2024(02): 34-39 .
![]() | |
4. |
丁琦珂,豆浩,张二山,胡传伟,何静. 郑州市园林绿化树种的含碳率分析. 林草资源研究. 2024(01): 95-101 .
![]() | |
5. |
宋立,顾至欣,郭剑英. “双碳”目标下旅游碳排放影响因素变化规律研究. 生态经济. 2024(05): 132-137+188 .
![]() | |
6. |
钟金发,邓佳露,翁志强,林榅荷. 森林“碳库”经济价值实现机制研究. 林业经济问题. 2024(01): 42-50 .
![]() | |
7. |
张洪宇,程振博. 中国森林碳汇效度动态演进及时空演变格局. 天津农林科技. 2024(03): 37-42 .
![]() | |
8. |
叶军,朱妍妍,陈立勇,张露,邢玮,何冬梅. 泰州市森林碳储量现状及碳汇能力分析. 江苏林业科技. 2024(03): 16-21+57 .
![]() | |
9. |
朱诗柔,牟凤云,黄淇,沈祺林. 2000—2030年多级流域尺度下重庆市林地景观格局碳储量变化. 水土保持通报. 2024(03): 356-366 .
![]() | |
10. |
王彩玲. 定西市林业碳汇高质量发展存在的问题及对策. 甘肃科技纵横. 2024(08): 48-54 .
![]() | |
11. |
康嘉怡,何正斌,刘书言,伊松林. 实木家具制造过程能耗及碳排放分析. 家具. 2024(06): 9-14 .
![]() | |
12. |
曲学斌,王雅莹,李丹,赵岳冀,张岚彪. 内蒙古大兴安岭森林固碳能力时空变化及气象因素影响分析. 沙漠与绿洲气象. 2024(06): 117-123 .
![]() | |
13. |
刘蕊婷,马淑娟,张学万,陈飞勇,杜玉凤,徐景涛,王晋. 森林生态系统五大碳库碳储量估算模型及其影响因素研究进展. 林业建设. 2024(06): 11-25 .
![]() | |
14. |
胡勐鸿,李万峰,吕寻. 日本落叶松自由授粉家系选择和无性繁殖利用. 温带林业研究. 2023(01): 7-16 .
![]() | |
15. |
刘艳丽. 森林碳汇计量关键技术应用研究. 林业勘查设计. 2023(02): 86-90 .
![]() | |
16. |
叶家义,付军,陆卫勇,欧军,何斌. 南亚热带13年生大叶栎人工林固碳功能分析. 亚热带农业研究. 2023(01): 38-43 .
![]() | |
17. |
莫少壮,罗星乐,李嘉方,刘凡胜,何斌. 南丹县毛竹人工林生态系统生物量、碳储量及其分配格局. 农业研究与应用. 2023(01): 39-44 .
![]() | |
18. |
肖龙海. 贵州省林业碳汇发展探索与讨论. 现代园艺. 2023(12): 165-167+170 .
![]() | |
19. |
张少博,叶长存,郭帅,吕俊彦,陈烨,颜鹏,李征珍,李鑫. 农林土壤固碳减排技术研究进展及其在茶树栽培中的应用潜力. 中国茶叶. 2023(11): 10-17 .
![]() | |
20. |
张凯迪,苏建兰. 云南省防护林固碳贡献与增汇对策. 林业建设. 2023(06): 37-43 .
![]() | |
21. |
于欢,魏天兴,陈宇轩,沙国良,任康,辛鹏程,郭鑫. 黄土丘陵区典型人工林土壤有机碳储量的分布特征. 北京林业大学学报. 2023(12): 100-107 .
![]() | |
22. |
蔡爽. 森林培育对生态环境建设的影响研究. 造纸装备及材料. 2022(11): 156-158 .
![]() | |
23. |
周亚敏. 全球发展倡议下的中拉气候合作:基础、机遇与挑战. 拉丁美洲研究. 2022(06): 85-99+156-157 .
![]() |