Citation: | Ren Hao, Gao Guoqiang, Ma Yaoyuan, Li Zuwang, Gu Jiacun. Root nitrogen uptake and its relationship with root morphological and chemical traits in Pinus koraiensis at different ages[J]. Journal of Beijing Forestry University, 2021, 43(10): 65-72. DOI: 10.12171/j.1000-1522.20200385 |
[1] |
Lebauer D S, Treseder K K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed[J]. Ecology, 2008, 89(2): 371−379. doi: 10.1890/06-2057.1
|
[2] |
董雯怡, 聂立水, 李吉跃, 等. 应用15N示踪研究毛白杨苗木对不同形态氮素的吸收及分配[J]. 北京林业大学学报, 2009, 31(4):97−101. doi: 10.3321/j.issn:1000-1522.2009.04.017
Dong W Y, Nie L S, Li J Y, et al. Effects of nitrogen forms on the absorption and distribution of nitrogen in Populus tomentosa seedlings using the technique of 15N tracing[J]. Journal of Beijing Forestry University, 2009, 31(4): 97−101. doi: 10.3321/j.issn:1000-1522.2009.04.017
|
[3] |
Britto D T, Kronzucker H J. Ecological significance and complexity of N-source preference in plants[J]. Annals of Botany, 2013, 112(6): 957−963. doi: 10.1093/aob/mct157
|
[4] |
霍常富, 孙海龙, 范志强, 等. 根系氮吸收过程及其主要调节因子[J]. 应用生态学报, 2007, 18(6):1356−1364. doi: 10.3321/j.issn:1001-9332.2007.06.032
Huo C F, Sun H L, Fan Z Q, et al. Physiological processes and major regulating factors of nitrogen uptake by plant roots[J]. Chinese Journal of Applied Ecology, 2007, 18(6): 1356−1364. doi: 10.3321/j.issn:1001-9332.2007.06.032
|
[5] |
Liese R, Lübbe T, Albers N W, et al. The mycorrhizal type governs root exudation and nitrogen uptake of temperate tree species[J]. Tree Physiology, 2018, 38(1): 83−95. doi: 10.1093/treephys/tpx131
|
[6] |
Hong J T, Ma X X, Yan Y, et al. Which root traits determine nitrogen uptake by alpine plant species on the Tibetan Plateau?[J]. Plant and Soil, 2018, 424(1−2): 63−72. doi: 10.1007/s11104-017-3434-3
|
[7] |
Song M H, Zheng L L, Suding K N, et al. Plasticity in nitrogen form uptake and preference in response to long-term nitrogen fertilization[J]. Plant and Soil, 2015, 394(1−2): 215−224. doi: 10.1007/s11104-015-2532-3
|
[8] |
Leduc S D, Rothstein D E. Plant-available organic and mineral nitrogen shift in dominance with forest stand age[J]. Ecology, 2010, 91(3): 708−720. doi: 10.1890/09-0140.1
|
[9] |
Jagodzinski A M, Ziółkowski J, Warnkowska A, et al. Tree age effects on fine root biomass and morphology over chronosequences of Fagus sylvatica, Quercus robur and Alnus glutinosa stands[J/OL]. PLoS One, 2016, 11(2): e148668 [2020−11−16]. https://doi.org/10.1371/journal.pone.0148668.
|
[10] |
Hishi T, Tateno R, Fukushima K, et al. Changes in the anatomy, morphology and mycorrhizal infection of fine root systems of Cryptomeria japonica in relation to stand ageing[J]. Tree Physiology, 2016, 37: 61−70.
|
[11] |
Liu M, Xu F Z, Xu X L, et al. Age alters uptake pattern of organic and inorganic nitrogen by rubber trees[J]. Tree Physiology, 2018, 38: 1685−1693.
|
[12] |
李常诚, 李倩茹, 徐兴良, 等. 不同林龄杉木氮素的获取策略[J]. 生态学报, 2016, 36(9):2620−2625.
Li C C, Li Q R, Xu X L, et al. Nitrogen acquisition strategies of Cunninghamia lanceolate at different ages[J]. Acta Ecologica Sinica, 2016, 36(9): 2620−2625.
|
[13] |
Zhang Z L, Li N, Xiao J, et al. Changes in plant nitrogen acquisition strategies during the restoration of spruce plantations on the eastern Tibetan Plateau, China[J]. Soil Biology and Biochemistry, 2018, 119: 50−58. doi: 10.1016/j.soilbio.2018.01.002
|
[14] |
翟明普, 沈国舫. 森林培育学[M]. 3版. 北京: 中国林业出版社, 2016.
Zhai M P, Shen G F. Silviculture [M]. 3rd ed. Beijing: China Forestry Publishing House, 2016.
|
[15] |
Warren C R, Adams P R. Uptake of nitrate, ammonium and glycine by plants of Tasmanian wet eucalypt forests[J]. Tree Physiology, 2007, 27(3): 413−419. doi: 10.1093/treephys/27.3.413
|
[16] |
Liu M, Li C C, Xu X L, et al. Organic and inorganic nitrogen uptake by 21 dominant tree species in temperate and tropical forests[J]. Tree Physiology, 2017, 37(11): 1515−1526. doi: 10.1093/treephys/tpx046
|
[17] |
Lipson D, Näsholm T. The unexpected versatility of plants: organic nitrogen use and availability in terrestrial ecosystems[J]. Oecologia, 2001, 128(3): 305−316. doi: 10.1007/s004420100693
|
[18] |
Warren C R. Potential organic and inorganic N uptake by six Eucalyptus species[J]. Functional Plant Biology, 2006, 33(7): 653−660. doi: 10.1071/FP06045
|
[19] |
Wei L L, Chen C R, Xu Z H, et al. Direct uptake and rapid decrease of organic nitrogen by Wollemia nobilis[J]. Biology and Fertility of Soils, 2013, 49(8): 1247−1252. doi: 10.1007/s00374-013-0818-2
|
[20] |
Guo D L, Xia M X, Wei X, et al. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species[J]. New Phytologist, 2008, 180(3): 673−683. doi: 10.1111/j.1469-8137.2008.02573.x
|
[21] |
Gu J C, Xu Y, Dong X Y, et al. Root diameter variations explained by anatomy and phylogeny of 50 tropical and temperate tree species[J]. Tree Physiology, 2014, 34(4): 415−425. doi: 10.1093/treephys/tpu019
|
[22] |
Geßler A, Kreuzwieser J, Dopatka T, et al. Diurnal courses of ammonium net uptake by the roots of adult beech (Fagus sylvatica) and spruce (Picea abies) trees[J]. Plant and Soil, 2002, 240(1): 23−32. doi: 10.1023/A:1015831304911
|
[23] |
Mckane R B, Johnson L C, Shaver G R, et al. Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra[J]. Nature, 2002, 415: 68−71. doi: 10.1038/415068a
|
[24] |
Pregitzer K S, Deforest J L, Burton A J, et al. Fine root architecture of nine north American trees[J]. Ecological Monographs, 2002, 72(2): 293−309. doi: 10.1890/0012-9615(2002)072[0293:FRAONN]2.0.CO;2
|
[25] |
张韫, 崔晓阳. 白桦幼苗NH4+/NO3−吸收特征的研究[J]. 北京林业大学学报, 2011, 33(3):26−30.
Zhang Y, Cui X Y. NH4+/NO3− absorption characteristics of Betula platyphylla seedlings[J]. Journal of Beijing Forestry University, 2011, 33(3): 26−30.
|
[26] |
Zhu F F, Dai L M, Hobbie E A, et al. Uptake patterns of glycine, ammonium, and nitrate differ among four common tree species of northeast China[J]. Frontiers in Plant Science, 2019, 10: 1−11.
|
[27] |
Rosenvald K, Ostonen I, Uri V, et al. Tree age effect on fine-root and leaf morphology in a silver birch forest chronosequence[J]. European Journal of Forest Research, 2013, 132(2): 219−230. doi: 10.1007/s10342-012-0669-7
|
[28] |
Jagodzinski A M, Kalucka I. Fine roots biomass and morphology in a chronosequence of young Pinus sylvestris stands growing on a reclaimed lignite mine spoil heap[J]. Dendrobiology, 2010, 64: 19−30.
|
[29] |
曾凡鹏, 迟光宇, 陈欣, 等. 辽东山区不同林龄落叶松人工林土壤−根系C∶N∶P生态化学计量特征[J]. 生态学杂志, 2016, 35(7):1819−1825.
Zeng F P, Chi G Y, Chen X, et al. The stoichiometric characteristics of C, N and P in soil and root of larch (Larix spp.) plantation at different stand ages in mountainous region of eastern Liaoning Province, China[J]. Chinese Journal of Ecology, 2016, 35(7): 1819−1825.
|
[30] |
Robinson D, Hodge A, Fitter A. Constraints on the form and function of root systems[M]//de Kroon H, Visser E J W, ed. Root ecology. Berlin: Springer, 2003: 1−31.
|
[31] |
Kong D L, Wang J J, Zeng H, et al. The nutrient absorption-transportation hypothesis: optimizing structural traits in absorptive roots[J]. New Phytologist, 2017, 213(4): 1569−1572. doi: 10.1111/nph.14344
|
[32] |
Guo D L, Mitchell R J, Hendricks J J. Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest[J]. Oecologia, 2004, 140(3): 450−457. doi: 10.1007/s00442-004-1596-1
|
[33] |
Ma Z Q, Guo D L, Xu X L, et al. Evolutionary history resolves global organization of root functional traits[J]. Nature, 2018, 555: 94−97. doi: 10.1038/nature25783
|
[34] |
Bowsher A W, Miller B J, Donovan L A. Evolutionary divergences in root system morphology, allocation, and nitrogen uptake in species from high- versus low-fertility soils[J]. Functional Plant Biology, 2016, 43(2): 129−140. doi: 10.1071/FP15162
|
[35] |
Comas L H, Eissenstat D M. Patterns in root trait variation among 25 co-existing North American forest species[J]. New Phytologist, 2009, 182(4): 919−928. doi: 10.1111/j.1469-8137.2009.02799.x
|
[1] | Chen Xiaomeng, Wang Yuechen, Chai Xuying, Li Aining, Wang Yonglin. Deletion mutations and its phenotypic analysis of two-component genes in Lonsdalea populi[J]. Journal of Beijing Forestry University, 2021, 43(9): 25-37. DOI: 10.12171/j.1000-1522.20210007 |
[2] | Zhang Ping, Li Chaoyang, Zhao Qingquan, Wang Lihai, Ma Ling. Inhibition effects of biocontrol bacteria strains on the pathogen of Camellia oleifera anthracnose[J]. Journal of Beijing Forestry University, 2020, 42(10): 107-116. DOI: 10.12171/j.1000-1522.20190409 |
[3] | GAN Lu, SU Hao-tian, LING Xin-wen, YIN Shu-xia. Rust pathogen identification and mechanism of disease-resistance research on Kentucky bluegrass dwarf mutant[J]. Journal of Beijing Forestry University, 2017, 39(3): 87-92. DOI: 10.13332/j.1000-1522.20160315 |
[4] | LIU Jian-feng, ZHANG Yu-chu, LIU Ting, Celal Tuncer, CHENG Yun-qing. Screening of a highly pathogenic strain against hazelnut weevil and microscopic observation on its infection process[J]. Journal of Beijing Forestry University, 2017, 39(3): 32-37. DOI: 10.13332/j.1000-1522.20160322 |
[5] | CAO Feng, YANG Ling, GONG Shu-rong, ZHANG Lin, NIU Qiu-hong. Relationships between pathogenic bacterium and the endophytic bacteria isolated from Bursaphelenchus xylophilus.[J]. Journal of Beijing Forestry University, 2016, 38(9): 25-33. DOI: 10.13332/j.1000-1522.20160082 |
[6] | BEN Ai-ling, ZENG Fei-li, QIAO Xue-juan, ZHENG Jing-rong, HAN Zheng-min. Colonization and pathogenicity for American and Chinese bacterial strains carried by pine wood nematodes.[J]. Journal of Beijing Forestry University, 2013, 35(1): 83-87. |
[7] | HU Ching-yu, CHEN Jan-chang, WEI Chun-hung, CHEN Chaur-tzuhn. Using MODIS image data to estimate the terrestrial net primary productivity (NPP) of ecological zone in Taiwan.[J]. Journal of Beijing Forestry University, 2011, 33(4): 33-39. |
[8] | WANG Meng-chang, FAN Jun-feng, LIANG Jun, ZHOU Yong-xue, WANG Lei. Effects of canker pathogen on four antioxidase activities of poplar callus[J]. Journal of Beijing Forestry University, 2010, 32(2): 118-122. |
[9] | SUN Dong-mei, YANG Qian, SONG Jin-zhu. Study on inhibition pathogen of Cytospora chrysosperma by Trichoderma aureoviride metabolite[J]. Journal of Beijing Forestry University, 2006, 28(1): 76-79. |
[10] | ZHAO Bo-guang, LIANG Bo, ZHAO Lin-guo, XU Mei. Influence of pine wood nematode on production of phytotoxins of an accompanying pathogenic bacterial strain[J]. Journal of Beijing Forestry University, 2005, 27(6): 71-75. |