Citation: | Chen Xiaomeng, Wang Yuechen, Chai Xuying, Li Aining, Wang Yonglin. Deletion mutations and its phenotypic analysis of two-component genes in Lonsdalea populi[J]. Journal of Beijing Forestry University, 2021, 43(9): 25-37. DOI: 10.12171/j.1000-1522.20210007 |
[1] |
贺伟, 任飞娟, 郭利民, 等. 欧美杨溃疡病的病原鉴定[J]. 林业科学, 2009, 45(6):104−108, 181. doi: 10.3321/j.issn:1001-7488.2009.06.018
He W, Ren F J, Guo L M, et al. Pathogen identification of poplar canker[J]. Forestry Science, 2009, 45(6): 104−108, 181. doi: 10.3321/j.issn:1001-7488.2009.06.018
|
[2] |
Li Y, He W, Ren F, et al. A canker disease of Populus × euramericana in China caused by Lonsdalea quercina subsp. populi[J]. Plant Disease, 2014, 98: 368−378. doi: 10.1094/PDIS-01-13-0115-RE
|
[3] |
Toth T, Lakatos T, Koltay A. Lonsdalea quercina subsp. populi subsp nov., isolated from bark canker of poplar trees[J]. International Journal of Systematic and Evolutionary Microbiology, 2013, 63: 2309−3101. doi: 10.1099/ijs.0.042911-0
|
[4] |
Jansson S, Douglas C J. Populus: a model system for plant biology[J]. Annual Review Plant Biology, 2007, 58: 435−458. doi: 10.1146/annurev.arplant.58.032806.103956
|
[5] |
Schaller G E. Histidine kinases and the role of two-component systems in plants[J]. Advances in Botanical Research, 2000, 32: 109−148.
|
[6] |
West A H, Stock A M. Histidine kinases and response regulator proteins in two-component signaling systems[J]. Tends in Biochemical Sciences, 2001, 26: 369−376. doi: 10.1016/S0968-0004(01)01852-7
|
[7] |
Tang J, Liu Y N, Barber C E, et al. Genetic and molecular analysis of a cluster of rpf genes involved in positive regulation of synthesis of extracellular enzymes and polysaccharide in Xanthomonas campestris pathovar campestris[J]. Molecular & General Genetics, 1991, 226(3): 409−417.
|
[8] |
Fishman M R, Zhang J, Bronstein P A, et al. Ca2+ -induced two-component system CvsSR regulates the type III secretion system and the extracytoplasmic function sigma factor AlgU in Pseudomonas syringae pv. tomato DC3000[J/OL]. Journal of Bacteriology, 2018, 200: e00538−17 [2021−01−13]. https://jb.asm.org/content/200/5/e00538-17.
|
[9] |
Xia C, Jian Z, Ming L C, et al. The effect of the potential PhoQ his tidine kinase inhibitors on Shigella flexneri virulence[J/OL]. PLoS ONE, 2011, 6(8): e23100 [2021−01−14]. https://doi.org/110.1371/journal.pone.0023100.
|
[10] |
Yang F, Tian F, Sun L, et al. A novel two-component system PdeK/PdeR regulates c-di-GMP turnover and virulence of Xanthomonas oryzae pv. oryzae[J]. Mol Plant Microbe Interact, 2012, 25(10): 1361−1369. doi: 10.1094/MPMI-01-12-0014-R
|
[11] |
Yang R L, Deng C Y, Wei J W, et al. A large-scale mutational analysis of two-component signaling systems of Lonsdalea quercina revealed that KdpD-KdpE regulates bacterial virulence against host poplar trees[J]. Molecular Plant-Microbe Interactions, 2018, 31: 724−736. doi: 10.1094/MPMI-10-17-0248-R
|
[12] |
Zheng Z, Deng C, He W, et al. The two-component system DcuS-DcuR is involved in virulence and stress tolerance in the poplar canker bacterium Lonsdalea populi[J]. Phytopathology, 2020, 110(10): 1763−1772.
|
[13] |
郑泽洋, 李爱宁, 常聚普, 等. 欧美杨细菌性溃疡病菌双组分系统lqp0812-lqp0813基因功能研究[J]. 植物病理学报, 2020, 50(3):301−310.
Zheng Z Y, Li A N, Chang J P, et al. Functional analysis of two-component lqp0812-lqp0813 gene in poplar bacterial canker[J]. Plant Pathology, 2020, 50(3): 301−310.
|
[14] |
Nowak A, Tyski S. The role of two-component regulatory systems of Gram-positive cocci in biofilm formation[J]. Postepy Mikrobiologii, 2012, 51: 265−276.
|
[15] |
Kravchenko U, Gogoleva N, Kalubaka N, et al. The PhoPQ two-component system is the major regulator of cell surface properties, stress responses and plant-derived substrate utilisation during development of Pectobacterium versatile-host plant pathosystems[J/OL]. Frontiers in Microbiology, 2021: 1: 621391 [2021−01−19]. https://doi.org/10.3389/fmicb.2020.621391.
|
[16] |
Sébastien B G, Edwige M, Lacroix J M. The two-component system CpxAR is essential for virulence in the phytopathogen bacteria Dickeya dadantii EC3937[J]. Environmental Microbiology, 2016, 17(11): 4415−4428.
|
[17] |
Gooderham W J, Hancock R E W. Regulation of virulence and antibiotic resistance by two-component regulatory systems in Pseudomonas aeruginosa[J]. Fems Microbiology Reviews, 2009, 33: 279−294. doi: 10.1111/j.1574-6976.2008.00135.x
|
[18] |
Baek J. Transcriptome analysis of phosphate starvation response in Escherichia coli[J]. Journal of Microbiology & Biotechnology, 2007, 17(2): 244.
|
[19] |
Howery K E, ClemMer K M, Rather P N. The Rcs regulon in Proteus mirabilis: implications for motility, biofilm formation, and virulence[J]. Current Genetics, 2016, 62: 775−789. doi: 10.1007/s00294-016-0579-1
|
[20] |
Wang Q, Zhao Y, Mcclelland M, et al. The RcsCDB signaling system and swarming motility in Salmonella enterica serovar : dual regulation of flagellar and SPI-2 virulence genes[J]. Journal of Bacteriology, 2007, 189: 8447−8457. doi: 10.1128/JB.01198-07
|
[21] |
Alon U. Response regulator output in bacterial chemotaxis[J]. The EMBO Journal, 1998, 17(15): 4238−4248. doi: 10.1093/emboj/17.15.4238
|
[22] |
Bertrand J J, West J T, Engel J N. Genetic analysis of the regulation of type IV pilusfunction by the Chp chemosensory system of Pseudomonas aeruginosa[J]. Journal of Bacteriology, 2010, 192: 994−1010. doi: 10.1128/JB.01390-09
|
[23] |
Blus-Kadosh I, Zilka A, Yerushalmi G, et al. The effect of pstS and phoB on quorum sensing and swarming motility in Pseudomonas aeruginosa[J/OL]. PLoS One, 2013, 8(9): e74444 [2021−01−06]. https//joumals.plos.org/pkosone/article?id=10.1371/journal.pone.0074444.
|
[24] |
Zhang B, Zhang Y, Liang F, et al. An extract produced by Bacillus sp. BR3 influences the function of the GacS/GacA two-component system in Pseudomonas syringae pv. tomato DC3000[J]. Frontiers in Microbiology, 2019, 10: 2005. doi: 10.3389/fmicb.2019.02005
|
[25] |
Bereswill S, Geider K. Characterization of the rcsB gene from Erwinia amylovora and its influence on exoploysaccharide synthesis and virulence of the fire blight pathogen[J]. Journal of Bacteriology, 1997, 179(4): 1354−1361. doi: 10.1128/JB.179.4.1354-1361.1997
|
[26] |
Birgit M P. Involvement of two-component signaling on bacterial motility and biofilm development[J/OL]. Journal of Bacteriology, 2017, 199(18): e00259−17 [2020−12−16]. https://jb.asm.org/content/199/18/e00259-17.
|
[27] |
Goulart C L, Barbosa L C, Bisch P M, et al. Catalases and PhoB/PhoR system independently contribute to oxidative stress resistance in Vibrio cholerae O1[J]. Microbiology, 2016, 162(11): 1955−1962. doi: 10.1099/mic.0.000364
|
[28] |
Tran T K, Han Q Q, Shi Y, et al. A comparative proteomic analysis of Salmonella typhimurium under the regulation of the RstA/RstB and PhoP/PhoQ systems[J]. Biochimica et Biophysica Acta, 2016, 1864(12): 1686−1695. doi: 10.1016/j.bbapap.2016.09.003
|
[29] |
Hu L Z, Zhang W P, Zhou M T, et al. Analysis of Salmonella PhoP/PhoQ regulation by dimethyl-SRM-based quantitative proteomics[J]. Biochimica et Biophysica Acta, 2016, 1864(1): 20−28. doi: 10.1016/j.bbapap.2015.10.003
|
[30] |
Zheng D, Xue B, Shao Y, et al. Activation of PhoBR under phosphate-rich conditions reduces the virulence of Xanthomonas oryzae pv. Oryza[J]. Molecular Plant Pathology, 2018, 19(9): 2066−2076. doi: 10.1111/mpp.12680
|