• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhang Jingpeng, Jiang Mingliang, Ma Xingxia, Zhang Bin. Wood decay performance of strobilurins preservatives[J]. Journal of Beijing Forestry University, 2021, 43(3): 131-137. DOI: 10.12171/j.1000-1522.20210010
Citation: Zhang Jingpeng, Jiang Mingliang, Ma Xingxia, Zhang Bin. Wood decay performance of strobilurins preservatives[J]. Journal of Beijing Forestry University, 2021, 43(3): 131-137. DOI: 10.12171/j.1000-1522.20210010

Wood decay performance of strobilurins preservatives

More Information
  • Received Date: January 10, 2021
  • Revised Date: February 18, 2021
  • Available Online: March 05, 2021
  • Published Date: April 15, 2021
  •   Objective  Wood preservative treatment is an effective way to prolong the lifespan of wood, reduce deforestation and further improve the ecological environment. In this study, in order to provide a basis for the development of eco-friendly wood preservatives and enrich the wood preservative system, the decay performance of a series of methoxyacrylate fungicides, iodopropynyl butyl carbamate (IPBC) and 4, 5-dichloro-N-octyl-4-isothiazolin-3-one (DCOIT) has been systematically screened.
      Method  In order to discover novel agents with high-activity to control wood rot fungus, the inhibition zone method was used to test the antifungal activity of 5 candidate agents (azoxystrobin, kresoxim-methyl, pyraclostrobin, IPBC and DCOIT) against wood rot fungus. Then the high-activity agents were prepared into water-based formulations, and the method for lab sand block test was used to evaluate interior decay resistance of treated materials at different levels of drug retention.
      Result  The inhibition zone results indicated that azoxystrobin, pyraclostrobin, DCOIT and IPBC showed good inhibitory effects on brown rot fungi and white rot fungi. Especially, pyraclostrobin and IPBC exhibited high antibacterial effects, which were higher than the control agent propiconazole. For the preservative treated radiata pine material under the chemical retention of about 0.21−0.46 kg/m3, the mass loss rates of treatment material by azoxystrobin and pyraclostrobin for white rot fungi and brown rot fungi were 3.1%−7.9% and 3.5%−7.8%, respectively. Moreover, the mass loss rate of IPBC treatment radiata pine material was 0.9%−5.6% under the chemical retention of about 0.2 kg/m3. The lab sand block test of the preservative treated Populus tomentosa results showed that the decay resistance of all the treated samples at different chemical retention levels was much better than that of the untreated samples. However, their mass loss rate was still large. It is not recommended to use this kind of fungicides for the preservative treatment of Populus tomentosa.
      Conclusion  In this study, the antifungal activity of pyraclostrobin and azoxystrobin formulations is equivalent to the control agent propiconazole, and antifungal effect of IPBC is better than propiconazole. So they could be further developed and utilized as a novel wood preservative.
  • [1]
    孙芳利, Prosper N K, 吴华平,等. 木竹材防腐技术研究概述[J]. 林业工程学报, 2017, 2(5):1−8.

    Sun F L, Prosper N K, Wu H P, et al. A review on the development of wood and bamboo preservation[J]. Journal of Forestry Engineering, 2017, 2(5): 1−8.
    [2]
    Goodell B, Nicholas D D, Suchultz T P. Wood deterioration and preservation: advances in our changing world[M]. Washington: American Chemical Society, 2003.
    [3]
    杨忠, 江泽慧, 费本华. 木材初期腐朽研究综述[J]. 林业科学, 2006, 42(3):99−103. doi: 10.11707/j.1001-7488.20060319

    Yang Z, Jiang Z H, Fei B H. Review of literature on incipient decay in wood[J]. Scientia Silvae Sinicae, 2006, 42(3): 99−103. doi: 10.11707/j.1001-7488.20060319
    [4]
    葛晓雯, 王立海, 侯捷建, 等. 褐腐杨木微观结构、力学性能与化学成分的关系研究[J]. 北京林业大学学报, 2016, 38(10):112−122.

    Ge X W, Wang L H, Hou J J, et al. Relationship among microstructure, mechanical properties and chemical compositions in Populus cathayana sapwood during brown-rot decay[J]. Journal of Beijing Forestry University, 2016, 38(10): 112−122.
    [5]
    马星霞, 王艳华, 贺大龙. 古建筑木结构病害与保护[M]. 北京: 中国林业出版社, 2021.

    Ma X X, Wang Y H, He D L. Diseases and protection of ancient wooden structure[M]. Beijing: China Forestry Publishing House, 2021.
    [6]
    曹金珍. 国外木材防腐技术和研究现状[J]. 林业科学, 2006, 42(7):120−126. doi: 10.3321/j.issn:1001-7488.2006.07.021

    Cao J Z. A review on wood preservation technologies and research[J]. Scientia Silvae Sinicae, 2006, 42(7): 120−126. doi: 10.3321/j.issn:1001-7488.2006.07.021
    [7]
    Williams G, Cornfield J A, Brown J, et al. Preservatives for wood and other cellulosic materials: U. S. Patent 5, 916, 356 [P]. 1999−01−29.
    [8]
    席丽霞, 蒋明亮, 马星霞. 三唑制剂及其铜唑制剂处理材的防腐性能[J]. 木材工业, 2015, 29(3):14−17.

    Xi L X, Jiang M L, Ma X X. Decay resistance of wood treated with triazole and copper triazole preservative[J]. China Wood Industry, 2015, 29(3): 14−17.
    [9]
    张景朋, 王朝晖, 马星霞, 等. 木结构覆板用胶合板的防腐处理工艺及性能评价[J]. 木材工业, 2020, 34(3):18−21.

    Zhang J P, Wang Z H, Ma X X, et al. Evaluation of processing technology and performance of preservative-treated plywood for wood-frame structures[J]. China Wood Industry, 2020, 34(3): 18−21.
    [10]
    鲍敏振, 于文吉, 陈玉和, 等. 铜唑防腐剂对杨木重组木防腐性能及物理力学性能的影响[J]. 浙江农林大学学报, 2020, 37(1):165−170. doi: 10.11833/j.issn.2095-0756.2020.01.022

    Bao M Z, Yu W J, Chen Y H, et al. Effects of CuAz preservative on the antiseptic performance and physical and mechanical properties of poplar scrimber[J]. Journal of Zhejiang A&F University, 2020, 37(1): 165−170. doi: 10.11833/j.issn.2095-0756.2020.01.022
    [11]
    王卿平, 曹金珍, 张景朋, 等. 含三唑复合防腐剂及其竹处理材的金属腐蚀性能[J]. 北京林业大学学报, 2019, 41(10):128−136.

    Wang Q P, Cao J Z, Zhang J P, et al. Metal corrosion performance of triazole-containing compound preservatives and treated bamboo[J]. Journal of Beijing Forestry University, 2019, 41(10): 128−136.
    [12]
    赵培亮. 新型Strobilurins衍生物的设计、合成及生物活性研究[D]. 武汉: 华中师范大学, 2008.

    Zhao P L. Design synthesis and bioactivity of novel strobilurin derivatives[D]. Wuhan: Huazhong Normal University, 2008.
    [13]
    Bartlett D W, Clough J M, Godwin J R, et al. The strobilurin fungicides[J]. Pest Management Science, 2002, 58(7): 649−662. doi: 10.1002/ps.520
    [14]
    Hansen J. IPBC: a new fungicide for wood protection[J]. Modern Paint and Coatings, 1984, 74(11): 50−56.
    [15]
    顾学斌, 王磊, 马振瀛. 抗菌防霉技术手册[M]. 北京: 化学工业出版社, 2018.

    Gu X B, Wang L, Ma Z Y. Technical manual of antifungal[M]. Beijing: Chemical Industry Press, 2018.
    [16]
    Williams T M. The mechanism of action of isothiazolone biocides[J]. Power Plant Chemistry, 2007, 9(1): 14−22.
    [17]
    张俊博. 异噻唑啉酮类化合物在黄瓜灰霉病及菌核病防治中的应用[D]. 北京: 中国农业科学院, 2012.

    Zhang J B. The study of isothiazolinones applied in controlling gray gould and sclerotinia on cucumber[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012.
    [18]
    Frazer F W. Compositions for the treatment of timber and other wood substrates: U. S. Patent 8, 927, 063 [P]. 2015−01−06.
    [19]
    国家药典委员会. 中华人民共和国药典[M]. 北京: 中国医药科技出版社, 2020.

    State Pharmacopeia Committee of China. Pharmacopoeia of the People’s Republic of China[M]. Beijing: China Medical Science and Technology Press, 2020.
    [20]
    蒋明亮, 李晓文, 张景朋, 等. 一种木竹材防腐防霉改性组合剂及处理木竹材的方法: 中国, CN201810820686.7[P]. 2018−12−18.

    Jiang M L, Li X W, Zhang J P, et al. The combination modifier of preservative and mildew resistant and method for treating wood and bamboo materials: China, CN201810820686.7[P]. 2018−12−18.
    [21]
    中华人民共和国国家林业局. 木材防腐剂对腐朽菌毒性实验室试验方法: LY/T 1283−2011[S]. 北京: 中国标准出版社, 2011.

    National Forestry Administration of the People ’s Republic of China. Method of laboratory test for toxicity of wood preservatives to decay fungi: LY/T 1283−2011[S]. Beijing: Standards Press of China, 2011.
    [22]
    席丽霞, 马星霞, 蒋明亮. 三唑制剂的防腐及防白蚁性能[J]. 林业科学, 2013, 49(7):123−128. doi: 10.11707/j.1001-7488.20130718

    Xi L X, Ma X X, Jiang M L. Decay and termite resistant performance of triazole preservatives[J]. Scientia Silvae Sinicae, 2013, 49(7): 123−128. doi: 10.11707/j.1001-7488.20130718
    [23]
    刘一星, 赵广杰. 木材学[M]. 北京: 中国林业出版社, 2012.

    Liu Y X, Zhao G J. Wood science[M]. Beijing: China Forestry Publishing House, 2012.
    [24]
    汪亮, 曹金珍, 姜卸宏. 蒙脱土–DDAC 复合防腐剂处理杨木的性能及表征[J]. 北京林业大学学报, 2010, 32(4):242−246.

    Wang L, Cao J Z, Jiang X H. Properties and characterization of poplar wood treated with the montmorillonite-DDAC compound preservative[J]. Journal of Beijing Forestry University, 2010, 32(4): 242−246.
    [25]
    Highley T L. Influence of type and amount of lignin on decay by Coriolus versicolor[J]. Canadian Journal of Forest Research, 1982, 12(2): 435−438. doi: 10.1139/x82-065
    [26]
    Highley T L, Murmanis L L. Micromorphology of degradation in western hemlock and sweetgum by the white-rot fungus Coriolus versicolor[J]. Holzforschung, 1987, 41(2): 67−71. doi: 10.1515/hfsg.1987.41.2.67
  • Related Articles

    [1]Xie Yunhong, Sun Zhao, Ding Zhidan, Luo Mi, Li Yun, Sun Yujun. UAV remote sensing image extraction of single tree crown of Chinese fir based on Mask R-CNN and transfer learning[J]. Journal of Beijing Forestry University, 2024, 46(3): 153-166. DOI: 10.12171/j.1000-1522.20210343
    [2]Cen Lumei, Lin Jian. Compression deformation fixation and properties of Chinese fir pretreated with citric acid[J]. Journal of Beijing Forestry University, 2022, 44(4): 157-164. DOI: 10.12171/j.1000-1522.20210467
    [3]Geng Dan, Xia Chaozong, Zhang Guobin, Liu Xiaodong, Kang Fengfeng. Biomass model construction of shrub layer of Chinese fir plantation[J]. Journal of Beijing Forestry University, 2018, 40(3): 34-41. DOI: 10.13332/j.1000-1522.20170257
    [4]ZHANG Shu-qin, YU Yan, FEI Ben-hua, WANG Han-kun. Longitudinal modulus of elasticity of Chinese fir tracheids[J]. Journal of Beijing Forestry University, 2012, 34(6): 126-130.
    [5]ZHANG Shu-qin, FEI Ben-hua, YU Yan, XING Xin-ting, WANG Han-kun. Constructing a twovariable model for predicting longitudinal MOE of wood: a case study on Chinese fir wood.[J]. Journal of Beijing Forestry University, 2012, 34(1): 123-126.
    [6]XIA Zhong-sheng, ZENG Wei-sheng, ZHU Song, LUO Hong-zhang1. Construction of tree volume equations for Chinese fir plantation in Guizhou Province, southwestern China.[J]. Journal of Beijing Forestry University, 2012, 34(1): 1-5.
    [7]ZENG Wei-sheng, XIA Zhong-sheng, ZHU Song, LUO Hong-zhang. Compatible tree volume and above-ground biomass equations for Chinese fir plantations in Guizhou[J]. Journal of Beijing Forestry University, 2011, 33(4): 1-6.
    [8]LI Yan-jun, TANG Rong-qiang, BAO Bin-fu, SUN Hui. Mechanical properties and dimensional stability of heat-treated Chinese fir[J]. Journal of Beijing Forestry University, 2010, 32(4): 232-236.
    [9]HUANG Hua-hong, CHEN Fen-xue, TONG Zai-kang, ZHU Yu-qiu.. Photosynthetic properties and chlorophyll florescence parameters of dwarf Chinese fir.[J]. Journal of Beijing Forestry University, 2009, 31(2): 69-73.
    [10]FU Yun-lin, XU Feng, TANG Li-ming, WEI Guang-sui. Wood anatomy of Chinese fir in different site types of its southern growing district.[J]. Journal of Beijing Forestry University, 2005, 27(1): 10-13.
  • Cited by

    Periodical cited type(3)

    1. 罗光成,雷相东,史景宁,何潇,向玮,李玉堂. 基于潜在生产力的吉林省长白落叶松人工林立地质量评价. 北京林业大学学报. 2025(01): 1-10 . 本站查看
    2. 高羽,李静,刘洋,乌雅瀚,巩家星,辛启睿. 结构方程模型在兴安落叶松林生长中的应用. 南京林业大学学报(自然科学版). 2023(01): 38-46 .
    3. 金鹏,徐明,冉富菊,雷云,蒙春灿,张健. 森林光环境特征及其生态作用. 山地农业生物学报. 2023(02): 38-47 .

    Other cited types(5)

Catalog

    Article views (1183) PDF downloads (57) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return