• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Yang Tianyu, Sun Shuang, Xia Guangda, Yuan Diliang, Song Xiuming, Liu Yu. Photocatalytic activity of Zn2+ doped TiO2 based on Chinese fir template[J]. Journal of Beijing Forestry University, 2021, 43(4): 141-149. DOI: 10.12171/j.1000-1522.20210025
Citation: Yang Tianyu, Sun Shuang, Xia Guangda, Yuan Diliang, Song Xiuming, Liu Yu. Photocatalytic activity of Zn2+ doped TiO2 based on Chinese fir template[J]. Journal of Beijing Forestry University, 2021, 43(4): 141-149. DOI: 10.12171/j.1000-1522.20210025

Photocatalytic activity of Zn2+ doped TiO2 based on Chinese fir template

More Information
  • Received Date: January 23, 2021
  • Revised Date: February 24, 2021
  • Available Online: April 03, 2021
  • Published Date: April 29, 2021
  •   Objective  In view of the waste of processing residues in wood processing industry, Zn2+ doped TiO2 composite photocatalyst with hierarchical porous structure of wood was prepared by impregnation calcination method. Chinese fir was used as template to improve the photocatalytic performance.
      Method  Taking methylene blue solution as the target degradation object, the effects of different concentrations of Zn2+ doping on the photocatalytic activity of wood template TiO2 were discussed. The photocatalytic degradation mechanism of wood template TiO2 was analyzed by XRD, SEM, XPS, BET, TEM and UV-Vis.
      Result  The Zn2+ doped wood template TiO2 presents good pore structure that hierarches from wood. It is a mixed crystal structure of anatase and rutile TiO2. The average grain size was 22.0 nm. The Zn2+ replaced the lattice position of Ti4+, which made the absorption wavelength of TiO2 presenting red shift in the visible region. Under UV irradiation, the degradation efficiency of methylene blue solution with 1.0% Zn-TiO2 reached 99.31%. Compared with the TiO2 without template, its degradation efficiency increased by 27%. Compared with the templated TiO2, the band gap decreased from 3.08 to 2.41 ev. The degradation efficiency can be retained 90% after five repeated experiments.
      Conclusion  Zn2+ doped TiO2 prepared with wood template shows excellent photocatalytic degradation performance and stability. The unique pore structure is conducive to light absorption and mass transfer, and the higher specific surface area provides more active sites for photocatalysis. Due to the difference of radius and valence state between Zn2+ and Ti4+, lattice defects will appear in the lattice, which can inhibit the recombination of photogenerated electrons and holes, increase the carrier transport and improve the photocatalytic performance. Thus, wood residues utilization with functional inorganic materials can present a promising prospect in industrial applicaion.
  • [1]
    沈和定, 石峰, 英犁, 等. 基于循环经济的木材工业可持续发展研究[J]. 林产工业, 2020, 57(9):53−55.

    Shen H D, Shi F, Ying L, et al. Study on sustainable development of wood industry based on circular economy[J]. China Forest Products Industry, 2020, 57(9): 53−55.
    [2]
    周浩, 汤端科. 建筑装饰材料与室内空气污染[J]. 四川水泥, 2015(1):279−279. doi: 10.3969/j.issn.1007-6344.2015.01.271

    Zhou H, Tang D K. Building decoration materials and indoor air pollution[J]. Sichuan Cement, 2015(1): 279−279. doi: 10.3969/j.issn.1007-6344.2015.01.271
    [3]
    吴泳, 张辉, 刘明兴, 等. 几种空气净化技术对室内甲醛污染净化效果对比研究[J]. 现代预防医学, 2007, 34(4):754−756. doi: 10.3969/j.issn.1003-8507.2007.04.034

    Wu Y, Zhang H, Liu M X, et al. Comparative study on purification effect of several air purification technologies on indoor formaldehyde pollution[J]. Modern Preventive Medicine, 2007, 34(4): 754−756. doi: 10.3969/j.issn.1003-8507.2007.04.034
    [4]
    Haarstrick A, Kut O M, Heinzle E, et al. TiO2-assisted degradation of environmentally relevant organic compounds in wastewater using a novel fluidized bed photoreactor[J]. Environmental Science and Technology, 2015, 30(3): 817−824.
    [5]
    孙亚秋, 邓国志, 田欣, 等. TiO2纳米光催化材料的研究进展[J]. 天津师范大学学报(自然科学版), 2019, 39(5):1−6.

    Sun Y Q, Deng G Z, Tian X, et al. Research progress of TiO2 nanophotocatalytic materials[J]. Journal of Tianjin Normal University (Natural Science Edition), 2019, 39(5): 1−6.
    [6]
    徐杨, 杜祥哲, 齐英杰, 等. 浅析木材加工剩余物的利用途径[J]. 林产工业, 2015, 42(5):40−44. doi: 10.3969/j.issn.1001-5299.2015.05.010

    Xu Y, Du X Z, Qi Y J, et al. Utilization of wood processing residues[J]. China Forest Products Industry, 2015, 42(5): 40−44. doi: 10.3969/j.issn.1001-5299.2015.05.010
    [7]
    袁弟亮, 刘玉, 王巍聪, 等. 基于杨木模板的二氧化钛制备及其甲醛降解性能研究[J]. 林业工程学报, 2020, 5(1):34−40.

    Yuan D L, Liu Y, Wang W C, et al. Preparation of titanium dioxide based on poplar template and its application on formaldehyde degradation[J]. Journal of Forestry Engineering, 2020, 5(1): 34−40.
    [8]
    Ohko Y, Fujishima A, Hashimoto K. Kinetic analysis of the photocatalytic degradation of gas-phase 2-propanol under mass transport-limited conditions with a TiO2 film photocatalyst[J]. Journal of Physical Chemistry B, 2016, 102(10): 1724−1729.
    [9]
    刘振兴. 提高二氧化钛光催化性能的途径[J]. 西部皮革, 2017, 39(14):7. doi: 10.3969/j.issn.1671-1602.2017.14.008

    Liu Z X. Ways to improve the photocatalytic performance of titanium dioxide[J]. Western Leather, 2017, 39(14): 7. doi: 10.3969/j.issn.1671-1602.2017.14.008
    [10]
    张新亚, 宋子健, 周府治, 等. 氟氮共掺杂二氧化钛/还原氧化石墨稀复合光催化剂的制备及其可见光催化性能[J]. 硅酸盐学报, 2015, 43(7):919−925.

    Zhang X Y, Song Z J, Zhou F Z, et al. Synthesis of F, N co-doped TiO2 decorated reduced graphene oxide and its visible light photocatalytic properties[J]. Journal of the Chinese Ceramic Society, 2015, 43(7): 919−925.
    [11]
    Kambe S, Nakade S, Kitamura T, et al. Influence of the electrolytes on electron transport in mesoporous TiO2-electrolyte systems[J]. Journal of Physical Chemistry B, 2002, 106(11): 2967−2972. doi: 10.1021/jp013397h
    [12]
    Chen J R, Qiu F X, Xu W Z, et al. Recent progress in enhancing photocatalytic efficiency of TiO2-based materials[J]. Applied Catalysis A: General, 2015, 495: 131−140. doi: 10.1016/j.apcata.2015.02.013
    [13]
    冯诗乐, 黄梦玲, 施玮, 等. Zn掺杂TiO2光阳极对染料敏化太阳电池性能影响[J]. 陶瓷学报, 2019, 40(1):18−23.

    Feng S L, Huang M L, Shi W, et al. Influence of Zn-doped TiO2 photoanode on the performance of dyesensitized solar cells[J]. Journal of Ceramics, 2019, 40(1): 18−23.
    [14]
    Bathla A, Pal B. Bimetallic Cu(core)@Zn(shell) co-catalyst impregnated TiO2 nanosheets (001 faceted) for the selective hydrogenation of quinoline under visible light irradiation[J]. Journal of Industrial and Engineering Chemistry, 2019, 79: 314−325. doi: 10.1016/j.jiec.2019.07.007
    [15]
    卢辛成, 蒋剑春, 孙康, 等. 掺杂型Zn2+-TiO2/AC光催化剂制备及光催化活性研究[C]//第22届炭–石墨材料学术会议论文集. 宁波: 中国电工技术学会, 2010: 7.

    Lu X C, Jiang J C, Sun K, et al. Preparation and photocatalytic activity of doped Zn2+-TiO2/AC[C]//Proceedings of the 22nd Symposium on Carbon Graphite Materials. Ningbo: The Specific Committee on Carbon-Graphite Materials of the China Electrotechnical Society, 2010: 7.
    [16]
    Zhao Y, Li C, Liu X, et al. Zn-doped TiO2 nanoparticles with high photocatalytic activity synthesized by hydrogen-oxygen diffusion flame[J]. Applied Catalysis B Environmental, 2008, 79(3): 208−215. doi: 10.1016/j.apcatb.2007.09.044
    [17]
    张宏忠, 李丽, 王明花, 等. 自组装模板法制备多孔纳米TiO2的研究进展[J]. 广州化工, 2010, 38(5):3−5. doi: 10.3969/j.issn.1001-9677.2010.05.002

    Zhang H Z, Li L, Wang M H, et al. Progress of researches on the self-assembly of porous nanostructured TiO2 by template methods[J]. Guangzhou Chemical Industry, 2010, 38(5): 3−5. doi: 10.3969/j.issn.1001-9677.2010.05.002
    [18]
    孙文会, 岳琳, 段二红, 等. 酵母菌生物模板法制备TiO2[J]. 实验技术与管理, 2017, 34(3):68−72.

    Sun W H, Yue L, Duan E H, et al. Preparation of TiO2 by using yeast bio-template method[J]. Experimental Technology and Management, 2017, 34(3): 68−72.
    [19]
    Ma H, Liu W W, Zhu S W, et al. Biotemplated hierarchical TiO2 derived from banana leaf and its adsorption-photocatalytic performance[J]. Acta Chimica Sinica, 2012, 70(70): 2353−2358.
    [20]
    潘峰, 张旺, 张荻, 等. 模板法制备TiO2的研究进展[J]. 材料导报, 2015, 29(1):22−30. doi: 10.11896/j.issn.1005-023X.2015.01.004

    Pan F, Zhang W, Zhang D, et al. Research advances in template-assisted synthesis of TiO2[J]. Materials Reports, 2015, 29(1): 22−30. doi: 10.11896/j.issn.1005-023X.2015.01.004
    [21]
    何盛, 徐军, 吴再兴, 等. 毛竹与樟子松木材孔隙结构的比较[J]. 南京林业大学学报(自然科学版), 2017, 41(2):157−162.

    He S, Xu J, Wu Z X, et al. Compare of porous structure of moso bamboo and Pinus sylvestris L. lumber[J]. Nanjing Forestry University (Natural Sciences Edition), 2017, 41(2): 157−162.
    [22]
    王哲, 王喜明. 木材多尺度孔隙结构及表征方法研究进展[J]. 林业科学, 2014, 50(10):123−133.

    Wang Z, Wang X M. Research progress of multi-scale pore structure and characterization methods of wood[J]. Scientia Silvae Sinicae, 2014, 50(10): 123−133.
    [23]
    费本华, 赵勇, 侯祝强, 等. 干燥过程中木材内部孔隙度变化的初步研究[J]. 北京林业大学学报, 2005, 27(增刊 1):1−4.

    Fei B H, Zhao Y, Hou Z Q, et al. Changes of wood interior porosity during the drying process[J]. Journal of Beijing Forestry University, 2005, 27(Suppl. 1): 1−4.
    [24]
    Hao R, Jiang B J, Li M X, et al. Fabrication of mixed-crystalline-phase spindle-like TiO2 for enhanced photocatalytic hydrogen production[J]. Science China Materials, 2015, 58(5): 363−369. doi: 10.1007/s40843-015-0052-3
    [25]
    张晓, 解英娟, 马佩军, 等. 物理混合法制备分级混晶TiO2微纳米材料及其光催化性能[J]. 高等学校化学学报, 2015, 36(10):1977−1983.

    Zhang X, Xie Y J, Ma P J, et al. Photocatalytic performances for mixed-phase hierarchical structure TiO2 prepared by physical mixing[J]. Chemical Journal of Chinese Universities, 2015, 36(10): 1977−1983.
    [26]
    Yu Y, Wang J, Li W, et al. Doping mechanism of Zn2+ ions in Zn-doped TiO2 prepared by sol-gel method[J]. Crystengcomm, 2015, 17(27): 5074−5080. doi: 10.1039/C5CE00933B
    [27]
    Nair R G, Mazumdar S, Modak B, et al. The role of surface O-vacancies in the photocatalytic oxidation of methylene blue by Zn-doped TiO2: a mechanistic approach[J/OL]. Journal of Photochemistry and Photobiology A: Chemistry, 2017: S1010603017303167 [2018−12−02]. http://DOI:10.1016/j.jphotochem.2017.05.016" target="_blank">10.1016/j.jphotochem.2017.05.016">http://DOI:10.1016/j.jphotochem.2017.05.016.
  • Related Articles

    [1]Li Yuanyuan, Ren Ruiqing, Chen Yao, Gao Jianmin. Preparation of SiO2 microspheres and their structural coloration on wood surface[J]. Journal of Beijing Forestry University, 2023, 45(3): 137-144. DOI: 10.12171/j.1000-1522.20220432
    [2]Zhang Longfei, Hairihan, Wang Siqun, Chen Zhilin, Wang Yamei. Preparation of wood functional coatings with carbon dots grafted TiO2 for its photocatalytic degradation of formaldehyde gas[J]. Journal of Beijing Forestry University, 2022, 44(1): 113-122. DOI: 10.12171/j.1000-1522.20210331
    [3]Xu Jiaqi, Shen Haiying, Cao Jinzhen. Synergistic effect of TiO2 and PDMS on improving anti-weathering properties of surface thermally-modified wood[J]. Journal of Beijing Forestry University, 2018, 40(4): 109-116. DOI: 10.13332/j.1000-1522.20180053
    [4]Zhu Zhimei, Zhang Yuhong, Sa Gang, Liu Jian, Ma Xujun, Deng Chen, Zhao Rui, Chen Shaoliang. Uptake of Cd2+ by ectomycorrhizal fungus Paxillus involutus and the modulation of H2O2 in Cd2+ influx[J]. Journal of Beijing Forestry University, 2018, 40(4): 24-32. DOI: 10.13332/j.1000-1522.20170418
    [5]Zhang Jiatong, Guan Yinghui, Si Liqing, Peng Xiawei, Meng Bingnan, Zhou Jinxing. Effects of Pb2+ and Cd2+ combined stress on photosynthesis of Morus alba[J]. Journal of Beijing Forestry University, 2018, 40(4): 16-23. DOI: 10.13332/j.1000-1522.20170332
    [6]DONG Yue, YUAN Bing-nan, JI Xiao-di, GUO Ming-hui. Preparation of wood-based g-C3N4/TiO2 composite coating and characterization of its photocatalytic properties[J]. Journal of Beijing Forestry University, 2017, 39(12): 112-117. DOI: 10.13332/j.1000-1522.20170266
    [7]SUN Ya-jie, ZHAO Tian-qi, ZHANG Chun-lei, FU Yu-jie, LI Shu-jun, MA Yan-li. Adsorption properties of lignin-g-polyacrylic acid hydrogel on Pb2+, Cu2+, Cd2+[J]. Journal of Beijing Forestry University, 2017, 39(12): 102-111. DOI: 10.13332/j.1000-1522.20170309
    [8]LANG Tao, LI Ni-ya, LU Yan-jun, SUN Hui-min, SHEN Ze-dan, JING Xiao-shu, ZHAO Rui, SHEN Xin, CHEN Shao-liang. Extracellular ATP, hydrogen peroxide, calcium and nitric oxide mediate root ion fluxes in Bruguiera gymnorrhiza subjected to salt stress[J]. Journal of Beijing Forestry University, 2014, 36(4): 16-22. DOI: DOI:10.13332/j.cnki.jbfu.2014.04.007
    [9]LIU Ya-lan, LI Jian, GENG Shao-hui.. Degradation toluene and xylene by TiO2-ACF photocatalytic material.[J]. Journal of Beijing Forestry University, 2012, 34(5): 157-160.
    [10]XIA Songhua, LI Li, LI Jian-zhang.. Ureaformaldehyde resin modified by nanoTiO2 under ultrasonic treatment[J]. Journal of Beijing Forestry University, 2009, 31(4): 123-129.
  • Cited by

    Periodical cited type(5)

    1. 胡慧玲,高凡,唐小雨,摆丽萍,肖宇峰,张富森. 北疆地区季节性积雪物理特性分析. 陕西水利. 2020(01): 1-3+6 .
    2. 郭建平. 植物对降水截留的研究进展. 应用气象学报. 2020(06): 641-652 .
    3. 唐小雨,高凡,闫正龙,彭亮. 有无遮蔽条件下季节性积雪分层物理特性对比分析. 灌溉排水学报. 2019(11): 74-84 .
    4. 林尤伟,蔡体久,段亮亮. 大兴安岭北部兴安落叶松林雪水文特征. 北京林业大学学报. 2018(06): 72-80 . 本站查看
    5. 孙弘哲,马大龙,臧淑英,吴祥文. 大兴安岭多年冻土区不同林型土壤微生物群落特征. 冰川冻土. 2018(05): 1028-1036 .

    Other cited types(11)

Catalog

    Article views (1548) PDF downloads (51) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return