• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Yang Tianyu, Sun Shuang, Xia Guangda, Yuan Diliang, Song Xiuming, Liu Yu. Photocatalytic activity of Zn2+ doped TiO2 based on Chinese fir template[J]. Journal of Beijing Forestry University, 2021, 43(4): 141-149. DOI: 10.12171/j.1000-1522.20210025
Citation: Yang Tianyu, Sun Shuang, Xia Guangda, Yuan Diliang, Song Xiuming, Liu Yu. Photocatalytic activity of Zn2+ doped TiO2 based on Chinese fir template[J]. Journal of Beijing Forestry University, 2021, 43(4): 141-149. DOI: 10.12171/j.1000-1522.20210025

Photocatalytic activity of Zn2+ doped TiO2 based on Chinese fir template

More Information
  • Received Date: January 23, 2021
  • Revised Date: February 24, 2021
  • Available Online: April 03, 2021
  • Published Date: April 29, 2021
  •   Objective  In view of the waste of processing residues in wood processing industry, Zn2+ doped TiO2 composite photocatalyst with hierarchical porous structure of wood was prepared by impregnation calcination method. Chinese fir was used as template to improve the photocatalytic performance.
      Method  Taking methylene blue solution as the target degradation object, the effects of different concentrations of Zn2+ doping on the photocatalytic activity of wood template TiO2 were discussed. The photocatalytic degradation mechanism of wood template TiO2 was analyzed by XRD, SEM, XPS, BET, TEM and UV-Vis.
      Result  The Zn2+ doped wood template TiO2 presents good pore structure that hierarches from wood. It is a mixed crystal structure of anatase and rutile TiO2. The average grain size was 22.0 nm. The Zn2+ replaced the lattice position of Ti4+, which made the absorption wavelength of TiO2 presenting red shift in the visible region. Under UV irradiation, the degradation efficiency of methylene blue solution with 1.0% Zn-TiO2 reached 99.31%. Compared with the TiO2 without template, its degradation efficiency increased by 27%. Compared with the templated TiO2, the band gap decreased from 3.08 to 2.41 ev. The degradation efficiency can be retained 90% after five repeated experiments.
      Conclusion  Zn2+ doped TiO2 prepared with wood template shows excellent photocatalytic degradation performance and stability. The unique pore structure is conducive to light absorption and mass transfer, and the higher specific surface area provides more active sites for photocatalysis. Due to the difference of radius and valence state between Zn2+ and Ti4+, lattice defects will appear in the lattice, which can inhibit the recombination of photogenerated electrons and holes, increase the carrier transport and improve the photocatalytic performance. Thus, wood residues utilization with functional inorganic materials can present a promising prospect in industrial applicaion.
  • [1]
    沈和定, 石峰, 英犁, 等. 基于循环经济的木材工业可持续发展研究[J]. 林产工业, 2020, 57(9):53−55.

    Shen H D, Shi F, Ying L, et al. Study on sustainable development of wood industry based on circular economy[J]. China Forest Products Industry, 2020, 57(9): 53−55.
    [2]
    周浩, 汤端科. 建筑装饰材料与室内空气污染[J]. 四川水泥, 2015(1):279−279. doi: 10.3969/j.issn.1007-6344.2015.01.271

    Zhou H, Tang D K. Building decoration materials and indoor air pollution[J]. Sichuan Cement, 2015(1): 279−279. doi: 10.3969/j.issn.1007-6344.2015.01.271
    [3]
    吴泳, 张辉, 刘明兴, 等. 几种空气净化技术对室内甲醛污染净化效果对比研究[J]. 现代预防医学, 2007, 34(4):754−756. doi: 10.3969/j.issn.1003-8507.2007.04.034

    Wu Y, Zhang H, Liu M X, et al. Comparative study on purification effect of several air purification technologies on indoor formaldehyde pollution[J]. Modern Preventive Medicine, 2007, 34(4): 754−756. doi: 10.3969/j.issn.1003-8507.2007.04.034
    [4]
    Haarstrick A, Kut O M, Heinzle E, et al. TiO2-assisted degradation of environmentally relevant organic compounds in wastewater using a novel fluidized bed photoreactor[J]. Environmental Science and Technology, 2015, 30(3): 817−824.
    [5]
    孙亚秋, 邓国志, 田欣, 等. TiO2纳米光催化材料的研究进展[J]. 天津师范大学学报(自然科学版), 2019, 39(5):1−6.

    Sun Y Q, Deng G Z, Tian X, et al. Research progress of TiO2 nanophotocatalytic materials[J]. Journal of Tianjin Normal University (Natural Science Edition), 2019, 39(5): 1−6.
    [6]
    徐杨, 杜祥哲, 齐英杰, 等. 浅析木材加工剩余物的利用途径[J]. 林产工业, 2015, 42(5):40−44. doi: 10.3969/j.issn.1001-5299.2015.05.010

    Xu Y, Du X Z, Qi Y J, et al. Utilization of wood processing residues[J]. China Forest Products Industry, 2015, 42(5): 40−44. doi: 10.3969/j.issn.1001-5299.2015.05.010
    [7]
    袁弟亮, 刘玉, 王巍聪, 等. 基于杨木模板的二氧化钛制备及其甲醛降解性能研究[J]. 林业工程学报, 2020, 5(1):34−40.

    Yuan D L, Liu Y, Wang W C, et al. Preparation of titanium dioxide based on poplar template and its application on formaldehyde degradation[J]. Journal of Forestry Engineering, 2020, 5(1): 34−40.
    [8]
    Ohko Y, Fujishima A, Hashimoto K. Kinetic analysis of the photocatalytic degradation of gas-phase 2-propanol under mass transport-limited conditions with a TiO2 film photocatalyst[J]. Journal of Physical Chemistry B, 2016, 102(10): 1724−1729.
    [9]
    刘振兴. 提高二氧化钛光催化性能的途径[J]. 西部皮革, 2017, 39(14):7. doi: 10.3969/j.issn.1671-1602.2017.14.008

    Liu Z X. Ways to improve the photocatalytic performance of titanium dioxide[J]. Western Leather, 2017, 39(14): 7. doi: 10.3969/j.issn.1671-1602.2017.14.008
    [10]
    张新亚, 宋子健, 周府治, 等. 氟氮共掺杂二氧化钛/还原氧化石墨稀复合光催化剂的制备及其可见光催化性能[J]. 硅酸盐学报, 2015, 43(7):919−925.

    Zhang X Y, Song Z J, Zhou F Z, et al. Synthesis of F, N co-doped TiO2 decorated reduced graphene oxide and its visible light photocatalytic properties[J]. Journal of the Chinese Ceramic Society, 2015, 43(7): 919−925.
    [11]
    Kambe S, Nakade S, Kitamura T, et al. Influence of the electrolytes on electron transport in mesoporous TiO2-electrolyte systems[J]. Journal of Physical Chemistry B, 2002, 106(11): 2967−2972. doi: 10.1021/jp013397h
    [12]
    Chen J R, Qiu F X, Xu W Z, et al. Recent progress in enhancing photocatalytic efficiency of TiO2-based materials[J]. Applied Catalysis A: General, 2015, 495: 131−140. doi: 10.1016/j.apcata.2015.02.013
    [13]
    冯诗乐, 黄梦玲, 施玮, 等. Zn掺杂TiO2光阳极对染料敏化太阳电池性能影响[J]. 陶瓷学报, 2019, 40(1):18−23.

    Feng S L, Huang M L, Shi W, et al. Influence of Zn-doped TiO2 photoanode on the performance of dyesensitized solar cells[J]. Journal of Ceramics, 2019, 40(1): 18−23.
    [14]
    Bathla A, Pal B. Bimetallic Cu(core)@Zn(shell) co-catalyst impregnated TiO2 nanosheets (001 faceted) for the selective hydrogenation of quinoline under visible light irradiation[J]. Journal of Industrial and Engineering Chemistry, 2019, 79: 314−325. doi: 10.1016/j.jiec.2019.07.007
    [15]
    卢辛成, 蒋剑春, 孙康, 等. 掺杂型Zn2+-TiO2/AC光催化剂制备及光催化活性研究[C]//第22届炭–石墨材料学术会议论文集. 宁波: 中国电工技术学会, 2010: 7.

    Lu X C, Jiang J C, Sun K, et al. Preparation and photocatalytic activity of doped Zn2+-TiO2/AC[C]//Proceedings of the 22nd Symposium on Carbon Graphite Materials. Ningbo: The Specific Committee on Carbon-Graphite Materials of the China Electrotechnical Society, 2010: 7.
    [16]
    Zhao Y, Li C, Liu X, et al. Zn-doped TiO2 nanoparticles with high photocatalytic activity synthesized by hydrogen-oxygen diffusion flame[J]. Applied Catalysis B Environmental, 2008, 79(3): 208−215. doi: 10.1016/j.apcatb.2007.09.044
    [17]
    张宏忠, 李丽, 王明花, 等. 自组装模板法制备多孔纳米TiO2的研究进展[J]. 广州化工, 2010, 38(5):3−5. doi: 10.3969/j.issn.1001-9677.2010.05.002

    Zhang H Z, Li L, Wang M H, et al. Progress of researches on the self-assembly of porous nanostructured TiO2 by template methods[J]. Guangzhou Chemical Industry, 2010, 38(5): 3−5. doi: 10.3969/j.issn.1001-9677.2010.05.002
    [18]
    孙文会, 岳琳, 段二红, 等. 酵母菌生物模板法制备TiO2[J]. 实验技术与管理, 2017, 34(3):68−72.

    Sun W H, Yue L, Duan E H, et al. Preparation of TiO2 by using yeast bio-template method[J]. Experimental Technology and Management, 2017, 34(3): 68−72.
    [19]
    Ma H, Liu W W, Zhu S W, et al. Biotemplated hierarchical TiO2 derived from banana leaf and its adsorption-photocatalytic performance[J]. Acta Chimica Sinica, 2012, 70(70): 2353−2358.
    [20]
    潘峰, 张旺, 张荻, 等. 模板法制备TiO2的研究进展[J]. 材料导报, 2015, 29(1):22−30. doi: 10.11896/j.issn.1005-023X.2015.01.004

    Pan F, Zhang W, Zhang D, et al. Research advances in template-assisted synthesis of TiO2[J]. Materials Reports, 2015, 29(1): 22−30. doi: 10.11896/j.issn.1005-023X.2015.01.004
    [21]
    何盛, 徐军, 吴再兴, 等. 毛竹与樟子松木材孔隙结构的比较[J]. 南京林业大学学报(自然科学版), 2017, 41(2):157−162.

    He S, Xu J, Wu Z X, et al. Compare of porous structure of moso bamboo and Pinus sylvestris L. lumber[J]. Nanjing Forestry University (Natural Sciences Edition), 2017, 41(2): 157−162.
    [22]
    王哲, 王喜明. 木材多尺度孔隙结构及表征方法研究进展[J]. 林业科学, 2014, 50(10):123−133.

    Wang Z, Wang X M. Research progress of multi-scale pore structure and characterization methods of wood[J]. Scientia Silvae Sinicae, 2014, 50(10): 123−133.
    [23]
    费本华, 赵勇, 侯祝强, 等. 干燥过程中木材内部孔隙度变化的初步研究[J]. 北京林业大学学报, 2005, 27(增刊 1):1−4.

    Fei B H, Zhao Y, Hou Z Q, et al. Changes of wood interior porosity during the drying process[J]. Journal of Beijing Forestry University, 2005, 27(Suppl. 1): 1−4.
    [24]
    Hao R, Jiang B J, Li M X, et al. Fabrication of mixed-crystalline-phase spindle-like TiO2 for enhanced photocatalytic hydrogen production[J]. Science China Materials, 2015, 58(5): 363−369. doi: 10.1007/s40843-015-0052-3
    [25]
    张晓, 解英娟, 马佩军, 等. 物理混合法制备分级混晶TiO2微纳米材料及其光催化性能[J]. 高等学校化学学报, 2015, 36(10):1977−1983.

    Zhang X, Xie Y J, Ma P J, et al. Photocatalytic performances for mixed-phase hierarchical structure TiO2 prepared by physical mixing[J]. Chemical Journal of Chinese Universities, 2015, 36(10): 1977−1983.
    [26]
    Yu Y, Wang J, Li W, et al. Doping mechanism of Zn2+ ions in Zn-doped TiO2 prepared by sol-gel method[J]. Crystengcomm, 2015, 17(27): 5074−5080. doi: 10.1039/C5CE00933B
    [27]
    Nair R G, Mazumdar S, Modak B, et al. The role of surface O-vacancies in the photocatalytic oxidation of methylene blue by Zn-doped TiO2: a mechanistic approach[J/OL]. Journal of Photochemistry and Photobiology A: Chemistry, 2017: S1010603017303167 [2018−12−02]. http://DOI:10.1016/j.jphotochem.2017.05.016" target="_blank">10.1016/j.jphotochem.2017.05.016">http://DOI:10.1016/j.jphotochem.2017.05.016.
  • Related Articles

    [1]Xue Yawen, Zhao Dingjie, Sun Mingqi, Yang Qimeng, Liu Baohua, Xu Hang, Zhang Zhiqiang. Characteristics and regeneration potential of soil seed banks in green space of urban parks in Beijing[J]. Journal of Beijing Forestry University, 2023, 45(10): 1-15. DOI: 10.12171/j.1000-1522.20230024
    [2]Shen Ying, Qin Tao, Guo Yinhua, Zhang Huan, Zhou Zhiyong. Short-term effects of forest fire on soil microorganism and enzyme activities of Pinus tabuliformis forest in Taiyue Mountain, Shanxi Province of northern China[J]. Journal of Beijing Forestry University, 2022, 44(4): 76-85. DOI: 10.12171/j.1000-1522.20210042
    [3]Sun Yonglei, Lu Zeyang, Zhou Jinxing, Pang Danbo, Liu Yuguo, Guan Yinghui. Soil enzyme activities and physicochemical properties of typical woodlands in karst faulted basins[J]. Journal of Beijing Forestry University, 2020, 42(2): 40-48. DOI: 10.12171/j.1000-1522.20180328
    [4]Jiang Jun, Liu Xianzhao, Jia Hongyan, Ming Angang, Chen Beibei, Lu Yuanchang. Effects of stand density on understory species diversity and soil physicochemical properties after close-to-nature transformation management of Chinese fir plantation[J]. Journal of Beijing Forestry University, 2019, 41(5): 170-177. DOI: 10.13332/j.1000-1522.20190022
    [5]LI Wei-ke, LIU Xiao-dong, NIU Shu-kui, LI Bing-yi, LIU Guan-hong, CHU Yan-qin. Impact of fire on soil microbial biomass of Pinus tabuliformis forest in Pingquan County, Hebei of northern China[J]. Journal of Beijing Forestry University, 2017, 39(10): 70-77. DOI: 10.13332/j.1000-1522.20160420
    [6]BAI Jing, YAN Jin-yu, HE Dong-jin, CAI Jin-biao, WANG Ren, YOU Wei-bin, XIAO Shi-hong, HOU Dong-liang, LI Wei-wei. Effects of Spartina alterniflora invasion in eastern Fujian coastal wetland on the physicochemical properties and enzyme activities of mangrove soil[J]. Journal of Beijing Forestry University, 2017, 39(1): 70-77. DOI: 10.13332/j.1000-1522.20160202
    [7]LI Ping-ping, XUE Bin, SUN De-zhi. Effects of applying sewage sludge compost on the physicochemical properties of soil and growth of Trifolium repens[J]. Journal of Beijing Forestry University, 2013, 35(1): 127-131.
    [8]WEN Yuan-guang, ZHENG Xian, LI Ming-chen, XU Hai-gen, LIANG Hong-wen, HUANG Cheng-biao, ZHU Hong-guang, HE Bin. Effects of eucalypt plantation replacing Masson pine forest on soil physiochemical properties in Guangxi, southern China.[J]. Journal of Beijing Forestry University, 2009, 31(6): 145-148.
    [9]XUE Wen-yue, DAI Wei, WANG Le-le, QI Jun, LI Xiao-hong. Characteristics of soil enzymes and their relationship with physicochemical properties in conife rous forest soils in Beijing mountainous area.[J]. Journal of Beijing Forestry University, 2009, 31(4): 90-96.
    [10]WANG Xu-qin, DAI Wei, XIA Liang-fang, DENG Zong-fu, YU Hai-xia, NIE Li-shui. Effects of different subtropical plantations on physical and chemical properties of soil[J]. Journal of Beijing Forestry University, 2006, 28(6): 56-59.
  • Cited by

    Periodical cited type(11)

    1. 赵钰婷,陈冬瑶,杨柳,李晶楠,宁广亮,姜静. 白桦四倍体×紫雨桦二倍体杂交种子活力及杂种子代生长特性分析. 温带林业研究. 2025(01): 1-8 .
    2. 任亚超,张军,王进茂,杨敏生. 科研反哺教学在林木育种学教学中的探索与实践. 安徽农业科学. 2024(10): 278-282 .
    3. 杨琦,王湘莹,王晓明,乔中全,唐丽. 大花紫薇ב丹红紫叶’紫薇杂交F_1代不育株转录组测序. 东北林业大学学报. 2024(09): 25-29 .
    4. 赵一帆,孔博,程雪桐,李亮,凌傲宇,李智群,康向阳,张平冬. 赤霉素喷洒处理诱导新疆杨2n花粉产生及其对微管骨架的影响. 北京林业大学学报. 2023(01): 40-50 . 本站查看
    5. 李智群,孔博,程雪桐,李亮,张平冬. 高温诱导银灰杨花粉败育的细胞学机理研究. 北京林业大学学报. 2023(05): 25-34 . 本站查看
    6. 刘春洋,彭朝凤,程世平,姚鹏强,耿喜宁,谢丽华. 高温诱导‘凤丹’牡丹2n雌配子创制三倍体. 园艺学报. 2023(07): 1455-1466 .
    7. 刘宣晨,刘彩霞,张世凯,李开隆,曲冠证. 大青杨×小黑杨异源三倍体新种质创制. 东北林业大学学报. 2023(10): 19-27 .
    8. 周炳秀,刘勇,彭玉信,张劲,赵建松,朱轶超,赵巧玲,王硕,陶靖,孟路. 雄性毛白杨无性系苗期表型和生理变异的早期综合评价. 东北林业大学学报. 2023(11): 1-9 .
    9. 吴婷,贾瑞冬,杨树华,赵鑫,于晓南,国圆,葛红. 蝴蝶兰多倍体育种研究进展与展望. 园艺学报. 2022(02): 448-462 .
    10. 张新宇,董阳,王梦蕾,孙照斌. 银腺杨解剖及理化性能研究. 林业科技. 2022(05): 33-36 .
    11. 陈赢男,韦素云,曲冠正,胡建军,王军辉,尹佟明,潘惠新,卢孟柱,康向阳,李来庚,黄敏仁,王明庥. 现代林木育种关键核心技术研究现状与展望. 南京林业大学学报(自然科学版). 2022(06): 1-9 .

    Other cited types(14)

Catalog

    Article views (1548) PDF downloads (51) Cited by(25)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return