• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Shen Ying, Qin Tao, Guo Yinhua, Zhang Huan, Zhou Zhiyong. Short-term effects of forest fire on soil microorganism and enzyme activities of Pinus tabuliformis forest in Taiyue Mountain, Shanxi Province of northern China[J]. Journal of Beijing Forestry University, 2022, 44(4): 76-85. DOI: 10.12171/j.1000-1522.20210042
Citation: Shen Ying, Qin Tao, Guo Yinhua, Zhang Huan, Zhou Zhiyong. Short-term effects of forest fire on soil microorganism and enzyme activities of Pinus tabuliformis forest in Taiyue Mountain, Shanxi Province of northern China[J]. Journal of Beijing Forestry University, 2022, 44(4): 76-85. DOI: 10.12171/j.1000-1522.20210042

Short-term effects of forest fire on soil microorganism and enzyme activities of Pinus tabuliformis forest in Taiyue Mountain, Shanxi Province of northern China

More Information
  • Received Date: February 04, 2021
  • Revised Date: May 18, 2021
  • Available Online: October 15, 2021
  • Published Date: April 24, 2022
  •   Objective  The function restoration of fired forest depends not only on the time of forest fire, but also on the forest fire type and intensity. It has great ecological implications for the reconstruction of forest structure to study soil physicochemical properties in short time period after fire occurrence.
      Method  Soil samples were taken separately during the depth of 0−5 cm and 5−10 cm in the burned area by crown fire and surface fire within one month since the fire occurrence, and then the soils were analyzed for soil microbial biomass, soil enzyme activity, and soil nutrient content. The metabolic entropy of soil microorganisms was estimated based on these analyzed soil properties.
      Result  Forest fire had a great effect on soil biophysical properties at 0−5 cm depth. Compared with forest surface fire, forest crown fire increased soil nutrient content, soil respiration rate (3.85%) and soil extracellular enzyme activities (47.67%), but it decreased the values of soil moisture content (21.95%) and soil microbial biomass carbon (27.98%) and nitrogen (9.65%) content. The result of statistical analysis indicated that forest fire manipulated soil microbial activity via the changed soil nutrient contents.
      Conclusion  Higher values are found in soil nutrient contents, the activities of soil microbial organism and extracellular enzymes in burned sample plots during short time period after forest fire. The crown fire exerts a stronger priming effect on soil biophysical properties especially in soil depth of 0 to 5 cm. The positive correlations of soil nutrient and the activities of soil microbes and enzymes indicate that soil physicochemical properties would get improved with the time of forest fire.
  • [1]
    Bowman D M J S, Paulo J K B. Fire in the earth system[J]. Science, 2009, 324: 481−484. doi: 10.1126/science.1163886
    [2]
    Scott A C, Glasspool I J. The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(29): 10861−10865. doi: 10.1073/pnas.0604090103
    [3]
    Pérez-Valera E, Verdú M, Navarro-Cano J A, et al. Soil microbiome drives the recovery of ecosystem functions after fire[J/OL]. Soil Biology and Biochemistry, 2020, 149: 107948[2021−01−15]. https://dio.org/10.1016/j.soilbio.2020.107948.
    [4]
    Liu Z, Yang J, Chang Y, et al. Spatial patterns and drivers of fire occurrence and its future trend under climate change in a boreal forest of Northeast China[J]. Global Change Biology, 2012, 18(6): 2041−2056. doi: 10.1111/j.1365-2486.2012.02649.x
    [5]
    Holden S R, Gutierrez A, Treseder K K. Changes in soil fungal communities, extracellular enzyme, activities, and litter decomposition across a fire chronosequence in Alaskan Boebal forests[J]. Ecosystems, 2013, 16(1): 34−46. doi: 10.1007/s10021-012-9594-3
    [6]
    Xu Y, Jian S, Lin Q, et al. Effects of a surface wildfire on soil nutrient and microbial functional diversity in a shrubbery[J]. Acta Ecologica Sinica, 2012, 32(5): 258−264. doi: 10.1016/j.chnaes.2012.07.007
    [7]
    车荣晓, 王芳, 王艳芬, 等. 土壤微生物总活性研究方法进展[J]. 生态学报, 2016, 36(8): 2103−2112.

    Che R X, Wang F, Wang Y F, et al. A review on the methods for measuring total microbial activity in soils[J]. Acta Ecologica Sinica, 2016, 36(8): 2103−2112.
    [8]
    Borgogni F, Lavecchia A, Mastrolonardo G, et al. Immediate- and short-term wildfire impact on soil microbial diversity and activity in a Mediterranean forest soil[J]. Soil Science, 2019, 184(2): 35−42. doi: 10.1097/SS.0000000000000250
    [9]
    Knelman J, Graham E, Ferrenberg S, et al. Rapid shifts in soil nutrients and decomposition enzyme activity in early succession following forest fire[J]. Forests, 2017, 8(9): 347. doi: 10.3390/f8090347
    [10]
    Hart S C, Deluca T H, Newman G S, et al. Post-fire vegetative dynamics as drivers of microbial community structure and function in forest soils[J]. Forest Ecology & Management, 2005, 220(1−3): 166−184.
    [11]
    Gutknecht J, Henry H, Balser T C. Inter-annual variation in soil extra-cellular enzyme activity in response to simulated global change and fire disturbance[J]. Pedobiologia, 2010, 53(5): 283−293. doi: 10.1016/j.pedobi.2010.02.001
    [12]
    Ludwig S M, Alexander H D, Kielland K, et al. Fire severity effects on soil carbon and nutrients and microbial processes in a Siberian larch forest[J]. Global Change Biology, 2018, 24(12): 5841−5852. doi: 10.1111/gcb.14455
    [13]
    郑琼, 崔晓阳, 邸雪颖, 等. 不同林火强度对大兴安岭偃松林土壤微生物功能多样性的影响[J]. 林业科学, 2012, 48(5): 95−100. doi: 10.11707/j.1001-7488.20120515

    Zheng Q, Cui X Y, Di X Y, el at. Effects of different forest fire intensities on microbial community functional diversity in forest soil in Daxing’ anling[J]. Scientia Silvae Sinicae, 2012, 48(5): 95−100. doi: 10.11707/j.1001-7488.20120515
    [14]
    Rodríguez J, González-Pérez J A, Turmero A, et al. Wildfire effects on the microbial activity and diversity in a Mediterranean forest soil[J]. Catena, 2017, 158: 82−88. doi: 10.1016/j.catena.2017.06.018
    [15]
    白雪娟, 曾全超, 安韶山, 等. 子午岭人工林土壤微生物生物量及酶活性[J]. 应用生态学报, 2018, 29(8): 2695−2704.

    Bai X J, Zeng Q C, An S S, el at. Soil microbial biomass and enzyme activities among different artificial forests in Ziwuling, Northwest China[J]. Chinese Journal of Applied Ecology, 2018, 29(8): 2695−2704.
    [16]
    张宇婧. 火烧强度和火后恢复时间对大兴安岭森林土壤有机碳含量的影响[J]. 应用生态学报, 2018, 29(8): 2455−2462.

    Zhang Y J. Effects of fire severity and recovery time on organic carbon content of forest soil in Great Xing’an Mountains, China[J]. Journal of Applied Ecology, 2018, 29(8): 2455−2462.
    [17]
    Pourreza M, Hosseini S M, Sinegani S A A, et al. Soil microbial activity in response to fire severity in Zagros oak (Quercus brantii Lindl.) forests, Iran, after one year[J]. Geoderma, 2014, 213: 95−102. doi: 10.1016/j.geoderma.2013.07.024
    [18]
    李斐. 山西省森林火灾现状分析及预防对策研究[D]. 太谷: 山西农业大学, 2017.

    Li F. Study on the counter measure and prevention of forest fire in Shanxi Province[D]. Taigu: Shanxi Agricultural University, 2017.
    [19]
    Holden S R, Berhe A A, Treseder K K. Decreases in soil moisture and organic matter quality suppress microbial decomposition following a boreal forest fire[J]. Soil Biology and Biochemistry, 2015, 87: 1−9. doi: 10.1016/j.soilbio.2015.04.005
    [20]
    鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.

    Lu R K. Methods of soil agricultural chemical analysis[M]. Beijing: China Agricultural Science and Technology Press, 2000.
    [21]
    郭晓伟. 凋落物处理和氮添加对森林土壤碳氮组分和微生物过程的影响[D]. 北京: 北京林业大学, 2020.

    Guo X W. Effects of litter manipulation and nitrogen addition on forest soil carbon and nitrogen fractions and microbial process[D]. Beijing: Beijing Forestry University, 2020.
    [22]
    毛瑢, 崔强, 赵琼, 等. 不同林龄杨树农田防护林土壤微生物生物量碳、氮和微生物活性[J]. 应用生态学报, 2009, 20(9): 2079−2084.

    Mao R, Cui Q, Zhao Q, et al. Different forest age poplar farmland shelter forest soil microbial biomass carbon, nitrogen and microbial activity[J]. Journal of Applied Ecology, 2009, 20(9): 2079−2084.
    [23]
    Sadeghifar M, Agha A B A, Pourreza M. Comparing soil microbial eco-physiological and enzymatic response to fire in the semi-arid Zagros woodlands[J/OL]. Applied Soil Ecology, 2020, 147: 103366 [2021−02−13]. https://www.sciencedirect.com/science/article/pii/S0929139319307905.
    [24]
    Saiya-Cork K R, Sinsabaugh R L, Zak D R. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acersaccharum forest soil[J]. Soil Biology and Biochemistry, 2002, 34(9): 1309−1315. doi: 10.1016/S0038-0717(02)00074-3
    [25]
    González-Pérez J A, González-Vila F J, Almendros G, et al. The effect of fire on soil organic matter: a review[J]. Environment International, 2004, 30(6): 855−870. doi: 10.1016/j.envint.2004.02.003
    [26]
    Masiello C A. New directions in black carbon organic geochemistry[J]. Marine Chemistry, 2004, 92: 201−213. doi: 10.1016/j.marchem.2004.06.043
    [27]
    Bird M I, Wynn J G, Saiz G, el at. The pyrogenic carbon cycle[J]. Annual Review of Earth and Planetary Sciences, 2015, 43: 273−298. doi: 10.1146/annurev-earth-060614-105038
    [28]
    Jiménez-Morillo N T, Almendros G, Rosa J, et al. Effect of a wildfire and of post-fire restoration actions in the organic matter structure in soil fractions[J/OL]. Science of The Total Environment, 2020, 728: 138715 [2021−02−16]. https://doi.org/10.1016/j.scitotenv.2020.138715.
    [29]
    Abney R B, Jin L, Berhe A A. Soil properties and combustion temperature: controls on the decomposition rate of pyrogenic organic matter[J/OL]. Catena, 2019, 182: 104127 [2021−01−09]. https://doi.org/10.1016/j.catena.2019.104127.
    [30]
    王玉哲, 刘俊第, 强严, 等. 马尾松林采伐迹地火烧黑炭对土壤活性碳氮库的影响[J]. 生态学报, 2018, 38(20): 7198−7207.

    Wang Y Z, Liu J D, Qiang Y, et al. Effects of black carbon on soil labile carbon and nitrogen pools in a Pinus massoniana plantation subjected to slash burning[J]. Acta Ecologica Sinica, 2018, 38(20): 7198−7207.
    [31]
    谷会岩, 金靖博, 陈祥伟, 等. 不同火烧强度林火对大兴安岭北坡兴安落叶松林土壤化学性质的长期影响[J]. 自然资源学报, 2010, 25(7): 1114−1121. doi: 10.11849/zrzyxb.2010.07.007

    Gu H Y, Jin J B, Chen X W, et al. The long-term impacts on chemical properties of Larix gmelinii forest on the northern slope of Greater Hinggan Mountains from a forest fire of varying fire intensity[J]. Journal of Natural Resources, 2010, 25(7): 1114−1121. doi: 10.11849/zrzyxb.2010.07.007
    [32]
    Debano L F. The role of fire and soil heating on water repellency in wildland environments: a review[J]. Journal of Hydrology, 2000, 231−232: 195−206. doi: 10.1016/S0022-1694(00)00194-3
    [33]
    姜培坤. 不同林分下土壤活性有机碳库研究[J]. 林业科学, 2005, 41(1): 10−13. doi: 10.3321/j.issn:1001-7488.2005.01.003

    Jiang P K. Soil active carbon pool under different types of vegetation[J]. Scientia Silvae Sinicae, 2005, 41(1): 10−13. doi: 10.3321/j.issn:1001-7488.2005.01.003
    [34]
    Kasischke E S, Verbyla D L, Rupp T S, et al. Alaska’s changing fire regime-implications for the vulnerability of its boreal forests[J]. Candian Journal of Forest Research, 2010, 40(7): 1313−1324.
    [35]
    Adkins J, Docherty K M, Gutknecht J L M, et al. How do soil microbial communities respond to fire in the intermediate term? Investigating direct and indirect effects associated with fire occurrence and burn severity[J/OL]. Science of The Total Environment, 2020, 745: 140957 [2021−01−19]. https://www.sciencedirect.com/science/article/pii/S0048969720344867?via%3Dihub.
    [36]
    刘俊第, 林威, 王玉哲, 等. 火烧对马尾松林土壤酶活性和有机碳组分的影响[J]. 生态学报, 2018, 38(15): 5374−5382.

    Liu J D, Lin W, Wang Y Z, et al. Effects of fire on soil enzyme activities and organic carbon fractions in Pinus massoniana forest[J]. Acta Ecologica Sinica, 2018, 38(15): 5374−5382.
    [37]
    Woolf D, Lehmann J. Modelling the long-term response to positive and negative priming of soil organic carbon by black carbon[J]. Biogeochemistry, 2012, 111: 83−95. doi: 10.1007/s10533-012-9764-6
    [38]
    Anderson T. Microbial eco-physiological indicators to asses soil quality[J]. Agriculture, Ecosystems & Environment, 2003, 98(1−3): 285−293.
    [39]
    Wüthrich C, Schaub D, Weber M, et al. Soil respiration and soil microbial biomass after fire in a sweet chestnut forest in southern Switzerland[J]. Catena (Giessen), 2002, 48(3): 201−215.
    [40]
    Boerner R E J, Brinkman J A. Fire frequency and soil enzyme activity in southern Ohio oak-hickory forests[J]. Applied Soil Ecology, 2003, 23: 137−146. doi: 10.1016/S0929-1393(03)00022-2
    [41]
    Yuan M, Duan J, Li J, et al. Effects of nitrogen fertilization and bioenergy crop species on central tendency and spatial heterogeneity of soil glycosidase activities[J/OL]. Scientific Reports, 2020, 10(1) [2021−01−17]. https://pubmed.ncbi.nlm.nih.gov/33184435/.
    [42]
    Fernández-García V, Miesel J, Baeza M J, et al. Wildfire effects on soil properties in fire-prone pine ecosystems: indicators of burn severity legacy over the medium term after fire[J]. Applied Soil Ecology, 2019, 135: 147−156. doi: 10.1016/j.apsoil.2018.12.002
    [43]
    Mayor Á G, Goirán S B, Vallejo V R, et al. Variation in soil enzyme activity as a function of vegetation amount, type, and spatial structure in fire-prone Mediterranean shrublands[J]. Science of The Total Environment, 2016, 573: 1209−1216. doi: 10.1016/j.scitotenv.2016.03.139
    [44]
    Lammirato C, Miltner A, Kaestner M. Effects of wood char and activated carbon on the hydrolysis of cellobiose by β-glucosidase from Aspergillus niger[J]. Soil Biology and Biochemistry, 2011, 43(9): 1936−1942. doi: 10.1016/j.soilbio.2011.05.021

Catalog

    Article views (989) PDF downloads (125) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return