Citation: | He Xiao, Zhou Chaofan, Lei Xiangdong, Li Haikui. Stand carbon stock growth model system for Larix olgensis plantation[J]. Journal of Beijing Forestry University, 2021, 43(11): 1-10. DOI: 10.12171/j.1000-1522.20210040 |
[1] |
Kindermann G, Obersteiner M, Sohngen B, et al. Global cost estimates of reducing carbon emissions through avoided deforestation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(30): 10302−10307. doi: 10.1073/pnas.0710616105
|
[2] |
Pan Y, Birdsey R A, Fang J, et al. A large and persistent carbon sink in the world’s forests[J]. Science, 2011, 333: 988−993. doi: 10.1126/science.1201609
|
[3] |
Dong L, Zhang L, Li F. Allometry and partitioning of individual tree biomass and carbon of Abies nephrolepis Maxim in northeast China[J]. Scandinavian Journal of Forest Research, 2016, 31(4): 399−411. doi: 10.1080/02827581.2015.1060257
|
[4] |
Zhu H Y, Weng Y H, Zhang H G, et al. Comparing fast- and slow-growing provenances of Picea koraiensis in biomass, carbon parameters and their relationships with growth[J]. Forest Ecology and Management, 2013, 307: 178−185. doi: 10.1016/j.foreco.2013.06.024
|
[5] |
Gao H, Dong L, Li F, et al. Evaluation of four methods for predicting carbon stocks of Korean pine plantations in Heilongjiang Province, China[J/OL]. PLoS One, 2015, 10(12): e0145017 [2020−12−19]. doi: 10.1371/journal.pone.0145017.
|
[6] |
Gibbs H K, Brown S, Niles J O, et al. Monitoring and estimating tropical forest carbon stocks: making REDD a reality[J/OL]. Environmental Research Letters, 2007, 2(4): 045023 [2021−01−19]. https://iopscience.iop.org/article/10.1088/1748-9326/2/4/045023/meta.
|
[7] |
Kauppi P E, Mielikäinen K, Kuusela K. Biomass and carbon budget of European forests, 1971 to 1990[J]. Science, 1992, 256: 70−74. doi: 10.1126/science.256.5053.70
|
[8] |
Alexeyev V, Birdsey R, Stakanov V, et al. Carbon in vegetation of Russian forests: methods to estimate storage and geographical distribution[J]. Water, Air, & Soil Pollution, 1995, 82(1): 271−282.
|
[9] |
Apps M J, Kurz W A, Beukema S J, et al. Carbon budget of the Canadian forest product sector[J]. Environmental Science and Policy, 1999, 2(1): 25−41. doi: 10.1016/S1462-9011(99)00006-4
|
[10] |
李海奎, 雷渊才. 中国森林植被生物量和碳储量评估[M]. 北京: 中国林业出版社, 2010.
Li H K, Lei Y C. Estimation and evaluation of forest biomass carbon storage in China[M]. Beijing: China Forestry Publishing House, 2010.
|
[11] |
周丽, 张卫强, 唐洪辉, 等. 南亚热带中幼龄针阔混交林碳储量及其分配格局[J]. 生态环境学报, 2014, 23(4):568−574. doi: 10.3969/j.issn.1674-5906.2014.04.004
Zhou L, Zhang W Q, Tang H H, et al. Carbon storage and their allocation of young-and-middle aged conifer-broadleaf mixed forests in southern subtropical region[J]. Ecology and Environment Sciences, 2014, 23(4): 568−574. doi: 10.3969/j.issn.1674-5906.2014.04.004
|
[12] |
胡海清, 罗碧珍, 魏书精, 等. 小兴安岭7种典型林型林分生物量碳密度与固碳能力[J]. 植物生态学报, 2015, 39(2):140−158. doi: 10.17521/cjpe.2015.0014
Hu H Q, Luo B Z, Wei S J, et al. Biomass carbon density and carbon sequestration capacity in seven typical forest types of the Xiaoxing’an Mountains, China[J]. Chinese Journal of Plant Ecology, 2015, 39(2): 140−158. doi: 10.17521/cjpe.2015.0014
|
[13] |
胡海清, 罗碧珍, 魏书精, 等. 大兴安岭5种典型林型森林生物碳储量[J]. 生态学报, 2015, 35(17):5745−5760.
Hu H Q, Luo B Z, Wei S J, et al. Estimating biological carbon storage of five typical forest types in the Daxing’anling Mountains, Heilongjiang, China[J]. Acta Ecologica Sinica, 2015, 35(17): 5745−5760.
|
[14] |
何潇, 李海奎, 曹磊, 等. 退化森林生态系统中林分碳储量的驱动因素: 以内蒙古大兴安岭为例[J]. 林业科学研究, 2020, 33(2):69−76.
He X, Li H K, Cao L, et al. The factors affecting carbon storage in degraded forest ecosystem: a case study from Daxing’anling areas of Inner Mongolia[J]. Forest Research, 2020, 33(2): 69−76.
|
[15] |
贾炜玮, 孙赫明, 李凤日. 包含哑变量的黑龙江省落叶松人工林碳储量预测模型系统[J]. 应用生态学报, 2019, 30(3):814−822.
Jia W W, Sun H M, Li F R. Prediction model system with dummy variables for carbon storage of larch plantation in Heilongjiang Province, China[J]. Chinese Journal of Applied Ecology, 2019, 30(3): 814−822.
|
[16] |
黄晓强, 信忠保, 赵云杰, 等. 林龄和立地条件对北京山区油松人工林碳储量的影响[J]. 水土保持学报, 2015, 29(6):184−190.
Huang X Q, Xin Z B, Zhao Y J, et al. Effects of stand ages and site conditions on carbon stock of Pinus tabuliformis plantations in Beijing mountainous area[J]. Journal of Soil and Water Conservation, 2015, 29(6): 184−190.
|
[17] |
李娜娜, 牟长城, 郑瞳, 等. 立地类型对长白山天然白桦林生态系统碳储量的影响[J]. 林业科学研究, 2015, 28(5):618−626. doi: 10.3969/j.issn.1001-1498.2015.05.003
Li N N, Mu C C, Zheng T, et al. Effect of site types on carbon storage of natural white birch forest ecosystem in Changbai Mountains, Northeast China[J]. Forest Research, 2015, 28(5): 618−626. doi: 10.3969/j.issn.1001-1498.2015.05.003
|
[18] |
郑瞳, 牟长城, 张毅, 等. 立地类型对张广才岭天然白桦林生态系统碳储量的影响[J]. 生态学报, 2016, 36(19):6284−6294.
Zheng T, Mou C C, Zhang Y, et al. Effects of site condition on ecosystem carbon storage in a natural Betula platyphylla forest in the Zhangguangcai Mountains, China[J]. Acta Ecologica Sinica, 2016, 36(19): 6284−6294.
|
[19] |
Reineke L H. Perfecting a stand-density index for even-aged forests[J]. Journal of Agricultural Research, 1933, 46(7): 627−638.
|
[20] |
国家林业局. 立木生物量模型及碳计量参数落叶松(LY/T 2654−2016)[S]. 北京: 中国标准出版社, 2016.
State Forestry Administration. Tree biomass models and related parameters to carbon accounting for Larix (LY/T 2654−2016)[S]. Beijing: China Standard Press, 2016.
|
[21] |
陈传国, 朱俊凤. 东北主要林木生物量手册[M]. 北京: 中国林业出版社, 1989.
Chen C G, Zhu J F. Biomass tables for main tree species in northeast China[M]. Beijing: China Forestry Publishing House, 1989.
|
[22] |
Wang C. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests[J]. Forest Ecology and Management, 2006, 222(1−3): 9−16. doi: 10.1016/j.foreco.2005.10.074
|
[23] |
IPCC. IPCC guidelines for national greenhouse gas inventories[M]. Tokyo: Institute for Global Environmental Strategies (IGES), 2006.
|
[24] |
唐守正. 广西大青山马尾松全林整体生长模型及其应用[J]. 林业科学研究, 1991, 4(增刊): 8−13.
Tang S Z. Integrated stand growth model and its application of masson pine in Guangxi Daqingshan[J]. Forest Research, 1991, 4(Suppl.): 8−13.
|
[25] |
Li H, Zhao P. Improving the accuracy of tree-level aboveground biomass equations with height classification at a large regional scale[J]. Forest Ecology and Management, 2013, 289: 153−163. doi: 10.1016/j.foreco.2012.10.002
|
[26] |
雷相东, 唐守正, 符利勇. 森林立地质量定量评价: 理论、方法、应用[M]. 北京: 中国林业出版社, 2020.
Lei X D, Tang S Z, Fu L Y. Quantitative evaluation of forest site quality: theory, method, application[M]. Beijing: China Forestry Publishing House, 2020.
|
[27] |
唐守正, 张会儒, 胥辉. 相容性生物量模型的建立及其估计方法研究[J]. 林业科学, 2000, 36(增刊):19−27.
Tang S Z, Zhang H R, Xu H. Study on establish and estimate method of compatible biomass model[J]. Scientia Silvae Sinicae, 2000, 36(Suppl.): 19−27.
|
[28] |
董利虎, 李凤日, 宋玉文. 东北林区4个天然针叶树种单木生物量模型误差结构及可加性模型[J]. 应用生态学报, 2015, 26(3):704−714.
Dong L H, Li F R, Song Y W. Error structure and additivity of individual tree biomass model for four natural conifer species in Northeast China[J]. Chinese Journal of Applied Ecology, 2015, 26(3): 704−714.
|
[29] |
唐守正, 郎奎建, 李海奎. 统计和生物数学模型计算(ForStat教程) [M]. 北京: 科学出版社, 2009.
Tang S Z, Lang K J, Li H K. Statistics and computation of biomathematical models (ForStat textbook)[M]. Beijing: Science Press, 2009.
|
[30] |
曾伟生, 唐守正. 非线性模型对数回归的偏差校正及与加权回归的对比分析[J]. 林业科学研究, 2011, 24(2):137−143.
Zeng W S, Tang S Z. Bias correction in logarithmic regression and comparison with weighted regression for non-linear models[J]. Forest Research, 2011, 24(2): 137−143.
|
[31] |
曾伟生, 唐守正. 立木生物量方程的优度评价和精度分析[J]. 林业科学, 2011, 47(11):106−113. doi: 10.11707/j.1001-7488.20111117
Zeng W S, Tang S Z. Goodness evaluation and precision analysis of tree biomass equations[J]. Scientia Silvae Sinicae, 2011, 47(11): 106−113. doi: 10.11707/j.1001-7488.20111117
|
[32] |
曹磊, 刘晓彤, 李海奎, 等. 广东省常绿阔叶林生物量生长模型[J]. 林业科学研究, 2020, 33(5):61−67.
Cao L, Liu X T, Li H K, et al. Biomass growth models for evergreen broadleaved forests in Guangdong[J]. Forest Research, 2020, 33(5): 61−67.
|
[33] |
Yuan Z, Ali A, Jucker T, et al. Multiple abiotic and biotic pathways shape biomass demographic processes in temperate forests[J/OL]. Ecology, 2019, 100(5): e02650 [2021−01−14]. doi: 10.1002/ecy.2650.
|
[34] |
Cannell M G R. Woody biomass of forest stands[J]. Forest Ecology and Management, 1984, 8(3−4): 299−312. doi: 10.1016/0378-1127(84)90062-8
|
[35] |
Rahman M M, Kabir M E, Akon A S M J U, et al. High carbon stocks in roadside plantations under participatory management in Bangladesh[J]. Global Ecology and Conservation. 2015, 3: 412−423.
|
[36] |
Khan M N I, Shil M C, Azad M S, et al. Allometric relationships of stem volume and stand level carbon stocks at varying stand density in Swietenia macrophylla King plantations, Bangladesh[J]. Forest Ecology and Management, 2018, 430: 639−648. doi: 10.1016/j.foreco.2018.09.002
|
[37] |
Khan M N I, Islam M R, Rahman A, et al. Allometric relationships of stand level carbon stocks to basal area, tree height and wood density of nine tree species in Bangladesh[J/OL]. Global Ecology and Conservation, 2020, 22: e01025 [2021−01−17]. doi: 10.1016/j.gecco.2020.e01025.
|
[38] |
Dong L, Zhang L, Li F. Evaluation of stand biomass estimation methods for major forest types in the eastern Daxing’an Mountains, northeast China[J/OL]. Forests, 2019, 10(9): 715 [2021−01−12]. https://doi.org/10.3390/f10090715.
|
[39] |
Castedo-Dorado F, Gómez-García E, Diéguez-Aranda U, et al. Aboveground stand-level biomass estimation: a comparison of two methods for major forest species in northwest Spain[J]. Annals of Forest Science, 2012, 69(6): 735−746. doi: 10.1007/s13595-012-0191-6
|
[40] |
Wu H, Xiang W, Fang X, et al. Tree functional types simplify forest carbon stock estimates induced by carbon concentration variations among species in a subtropical area[J]. Scientific Reports, 2017, 7(1): 1−11. doi: 10.1038/s41598-016-0028-x
|
[41] |
雷相东, 符利勇, 李海奎, 等. 基于林分潜在生长量的立地质量评价方法与应用[J]. 林业科学, 2018, 54(12):116−126. doi: 10.11707/j.1001-7488.20181213
Lei X D, Fu L Y, Li H K, et al. Methodology and applications of site quality assessment based on potential mean annual increment[J]. Scientia Silvae Sinicae, 2018, 54(12): 116−126. doi: 10.11707/j.1001-7488.20181213
|
[42] |
王秀云, 孙玉军, 马炜. 不同密度长白落叶松林生物量与碳储量分布特征[J]. 福建林学院学报, 2011, 31(3):221−226. doi: 10.3969/j.issn.1001-389X.2011.03.007
Wang X Y, Sun Y J, Ma W. Biomass and carbon storage distribution of different density in Larix olgensis plantation[J]. Journal of Fujian College of Forestry, 2011, 31(3): 221−226. doi: 10.3969/j.issn.1001-389X.2011.03.007
|