Citation: | Xie Muhong, Li Wenkai, Zhang Zhaolong, Cui Maokai, Wang Yi, Sun Yawei, Yang Guiyan. Activity analysis of different length fragments of walnut JrTT1-1 promoter in response to drought stress[J]. Journal of Beijing Forestry University, 2022, 44(8): 31-38. DOI: 10.12171/j.1000-1522.20210126 |
[1] |
Pelin A, Panos D. DNA sequence and structural properties as predictors of human and mouse promoters[J]. Gene, 2008, 410(1): 165−176. doi: 10.1016/j.gene.2007.12.011
|
[2] |
Coca M A, Almoguera C, Thomas T L, et al. Differential regulation of small heat-shock genes in plants: analysis of a water-stress-inducible and developmentally activated sunflower promoter[J]. Plant Molecular Biology, 1996, 31(4): 863−876. doi: 10.1007/BF00019473
|
[3] |
吉仁花, 张文波, 林晓飞, 等. 杂交构树UDP-葡萄糖脱氢酶基因编码蛋白的亚细胞定位及其启动子5′端缺失片段的功能分析[J]. 植物研究, 2020, 40(6): 932−942. doi: 10.7525/j.issn.1673-5102.2020.06.016
Ji R H, Zhang W B, Lin X F, et al. Subcellular localization of the protein coded by the UDP-glucose dehydrogenase gene from paper mulberry and functional of its promoter 5′-end deletion fragment[J]. Bulletin of Botanical Research, 2020, 40(6): 932−942. doi: 10.7525/j.issn.1673-5102.2020.06.016
|
[4] |
殷金瑶, 王义, 徐良向, 等. 橡胶树白粉菌(HO-73)启动子WY172不同长度片段的克隆及表达活性分析[J]. 生物技术通报, 2020, 36(1): 29−36. doi: 10.13560/j.cnki.biotech.bull.1985.2019-0728
Yin J Y, Wang Y, Xu L X, et al. Cloning and expression analysis of different-length fragments of Oidium heveae (HO-73) promoter WY172[J]. Biotechnology Bulletin, 2020, 36(1): 29−36. doi: 10.13560/j.cnki.biotech.bull.1985.2019-0728
|
[5] |
肖前林. 转录因子ZmMYB14、ZmNAC126参与玉米淀粉合成调控机制研究[D]. 雅安: 四川农业大学, 2017.
Xiao Q L. The mechanism of transcription factors ZmMYB14 and ZmNAC126 participated in the regulation of maize starch synthesis[D]. Ya’an: Sichuan Agricultural University, 2017.
|
[6] |
杨桂燕, 郭宇聪, 张凤娇, 等. 不同长度ThVHAc1基因启动子片段分离及活性分析[J]. 林业科学, 2016, 52(1): 55−61.
Yang G Y, Guo Y C, Zhang F J, et al. Isolation and activity analysis of different length ThVHAc1 promoters[J]. Scientia Silvae Sinicae, 2016, 52(1): 55−61.
|
[7] |
Appelhagen I, Weisshaar B, Sagasser M, et al. TRANSPARENT TESTA1 interacts with R2R3-MYB factors and affects early and late steps of flavonoid biosynthesis in the endothelium of Arabidopsis thaliana seeds[J]. The Plant Journal, 2011, 67(3): 406−419. doi: 10.1111/j.1365-313X.2011.04603.x
|
[8] |
Sagasser M, Lu G, Hahlbrock K, et al. A. thaliana TRANSPARENT TESTA 1 is involved in seed coat development and defines the WIP subfamily of plant zinc finger proteins[J]. Genes & Development, 2002, 16(1): 138−149.
|
[9] |
王艳花, 荐红举, 邱晓, 等. 白菜型油菜粒色主效基因BrTT1的调控机制分析[J]. 作物学报, 2020, 46(11): 1678−1689.
Wang Y H, Jian H J, Qiu X, et al. Regulatory mechanism of the seed coat color gene BrTT1 in Brassica rapa L.[J]. Acta Agronomica Sinica, 2020, 46(11): 1678−1689.
|
[10] |
Li X M, Chao D Y, Wu Y, et al. Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice[J]. Nature Genetics, 2015, 47(7): 827−833. doi: 10.1038/ng.3305
|
[11] |
杨毅. TT1基因在提高棉花抗逆性中的用途: 201110022652.1[P]. 2012−07−25.
Yang Y. The use of TT1 gene in improving cotton resistance: 201110022652.1[P]. 2012−07−25.
|
[12] |
Yang G, Chen S, Li D, et al. Multiple transcriptional regulation of walnut JrGSTTau1 gene in response to osmotic stress[J]. Physiologia Plantarum, 2019, 166(3): 748−761. doi: 10.1111/ppl.12833
|
[13] |
王艺, 张尚昆, 赵翔, 等. 核桃TT1类转录因子的筛选及干旱响应分析[J]. 西北林学院学报, 2020, 35(1): 86−93. doi: 10.3969/j.issn.1001-7461.2020.01.13
Wang Y, Zhang S K, Zhao X, et al. Identification and expression of the TT1-like transcription factor from Juglans regia under drought stress[J]. Journal of Northwest Forestry University, 2020, 35(1): 86−93. doi: 10.3969/j.issn.1001-7461.2020.01.13
|
[14] |
Yang G Y, Zhang W H, Liu Z X, et al. Both JrWRKY2 and JrWRKY7 of Juglans regia mediate responses to abiotic stresses and abscisic acid through formation of homodimers and interaction[J]. Plant Biology, 2017, 19(2): 268−278. doi: 10.1111/plb.12524
|
[15] |
Yang G Y, Zhang T T, Zhai M Z, et al. Two novel WRKY genes from Juglans regia, JrWRKY6 and JrWRKY53, are involved in abscisic acid-dependent stress responses[J]. Biologia Plantarum, 2017, 61(4): 611−621. doi: 10.1007/s10535-017-0723-x
|
[16] |
Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana[J]. The Plant Journal, 1998, 16(6): 735−743. doi: 10.1046/j.1365-313x.1998.00343.x
|
[17] |
Zheng L, Liu G, Meng X, et al. A WRKY gene from Tamarix hispida, ThWRKY4, mediates abiotic stress responses by modulating reactive oxygen species and expression of stress-responsive genes[J]. Plant Molecular Biology, 2013, 82(4−5): 303−320. doi: 10.1007/s11103-013-0063-y
|
[18] |
吴艳菊, 冷彦儒, 景思荦, 等. 利用真空侵染法在紫花苜蓿中瞬时表达GUS基因[J]. 分子植物育种, 2022, 20(3): 859−864.
Wu Y J, Leng Y R, Jing S L, et al. Expression of GUS gene in Medicago sativa L. by vacuum infiltration[J]. Molecular Plant Breeding, 2022, 20(3): 859−864.
|
[19] |
Yang G, Gao X, Ma K, et al. The walnut transcription factor JrGRAS2 contributes to high temperature stress tolerance involving in Dof transcriptional regulation and HSP protein expression[J]. BMC Plant Biology, 2018, 18(1): 367. doi: 10.1186/s12870-018-1568-y
|
[20] |
Yang G, Wang C, Wang Y, et al. Overexpression of ThVHAc1 and its potential upstream regulator, ThWRKY7, improved plant tolerance of Cadmium stress[J]. Scientific Reports, 2016, 6: 18752. doi: 10.1038/srep18752
|
[21] |
Lippok B, Birkenbihl R P, Rivory G, et al. Expression of AtWRKY33 encoding a pathogen- or PAMP-responsive WRKY transcription factor is regulated by a composite DNA motif containing W box elements[J]. Molecular Plant Microbe Interactions, 2007, 20(4): 420−429. doi: 10.1094/MPMI-20-4-0420
|
[22] |
郭丹华, 彭倩, 胡敏伦, 等. 紫心甘薯IbCHS基因启动子的克隆及功能分析[J]. 分子植物育种, 2019, 17(3): 700−705.
Guo D H, Peng Q, Hu M L, et al. Cloning and functional analysis of the promoter of IbCHS gene from purple sweet potato[J]. Molecular Plant Breeding, 2019, 17(3): 700−705.
|
[23] |
Tounsi S, Saidi M N, Abdelhedi R, et al. Functional analysis of TmHKT1;4-A2 promoter through deletion analysis provides new insight into the regulatory mechanism underlying abiotic stress adaptation[J]. Planta, 2021, 253(1): 18. doi: 10.1007/s00425-020-03533-9
|
[24] |
秦琳琳, 张曦, 姜骋, 等. 白桦BpZFP4基因启动子克隆和逆境响应元件功能分析[J]. 植物研究, 2019, 39(6): 917−926.
Qin L L, Zhang X, Jiang C, et al. Cloning and functional analysis of BpZFP4 promoter from birch (Betula platyphylla)[J]. Bulletin of Botanical Research, 2019, 39(6): 917−926.
|
[25] |
Feng Y, Cui R, Wang S, et al. Transcription factor BnaA9. WRKY47 contributes to the adaptation of Brassica napus to low boron stress by up-regulating the boric acid channel gene BnaA3. NIP5;1[J]. Plant Biotechnology Journal, 2020, 18(5): 1241−1254. doi: 10.1111/pbi.13288
|