• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Hou Siyuan, Zhang Huilong, Yao Jun, Zhang Ying, Zhao Nan, Zhao Rui, Zhou Xiaoyang, Chen Shaoliang. Populus euphratica PeREM6.5 regulating tolerance mechanism to water stress in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2022, 44(9): 40-51. DOI: 10.12171/j.1000-1522.20210195
Citation: Hou Siyuan, Zhang Huilong, Yao Jun, Zhang Ying, Zhao Nan, Zhao Rui, Zhou Xiaoyang, Chen Shaoliang. Populus euphratica PeREM6.5 regulating tolerance mechanism to water stress in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2022, 44(9): 40-51. DOI: 10.12171/j.1000-1522.20210195

Populus euphratica PeREM6.5 regulating tolerance mechanism to water stress in Arabidopsis thaliana

More Information
  • Received Date: May 20, 2021
  • Revised Date: July 13, 2021
  • Available Online: September 12, 2022
  • Published Date: September 24, 2022
  •   Objective  Remorin is a protein family commonly found in bryophytes, gymnosperms and angiosperms, and plays an important role in regulating plant growth, development, and the response to biotic stress. The physiological mechanism of remorin in plant adapting to abiotic stress has rarely been investigated. We have previously shown that PeREM6.5, a remorin protein originated from stress-resistant Populus euphratica, increased salt tolerance through enhancing activity of plasma membrane (PM) H+-ATPase. The role of PeREM6.5 in water stress tolerance was investigated in this study. The aim is to elucidate the physiological and molecular mechanism underlying PeREM6.5 in plant adaptation to drought stress.
      Method  The PeREM6.5-overexpressed Arabidopsis thaliana (OE1 and OE2), wildtype (WT), and vecter control (VC) were used in this study. These four genotypes of A. thaliana were treated with osmotic stress, soil drought and rehydration, respectively. The PeREM6.5-regulated drought response was evaluated at the physiological, biochemical and molecular levels.
      Result  Under mannitol treatment, the seed survival rate and root length of PeREM6.5-overexpressed Arabidopsis thaliana were significantly higher than WT and VC, and the cell membrane was less damaged by osmotic stress. The phenotypic differences were mainly related to the enhanced ability for water uptake and antioxidant defence in the transgenic plants. The expression of water channel genes, AtPIP1;2 and AtPIP2;1 was upregulated by osmotic treatment in PeREM6.5-transgenic lines. Mannitol treatment induced the accumulation of H2O2, causing oxidative damage to the cell membrane in WT and VC. PeREM6.5-transgenic plants up-regulated the transcription of antioxidant enzyme genes, POD and CAT after mannitol treatment. The high activities of POD and CAT could eliminate H2O2, and thus reduce the membrane damage caused by reactive oxygen species. After 9 d of drought treatment, the decrease of chlorophyll content in soil-cultured transgenic lines was lower than that of non-transgenic lines. After rehydration, the recovery of chlorophyll content in transgenic plants was higher than WT and VC. Moreover, PeREM6.5-transgenic plants exhibited a higher ability to maintain PSⅡ actual photosynthetic quantum yield under drought. These results indicated that the overexpression of PeREM6.5 improved the plant capacity to tolerate water stress.
      Conclusion  The above results indicate that the overexpression of PeREM6.5 gene enhances the tolerance to water stress in Arabidopsis thaliana plants.
  • [1]
    Caruso A, Chefdor F, Carpin S, et al. Physiological characterization and identification of genes differentially expressed in response to drought induced by PEG 6000 in Populus canadensis leaves[J]. Plant Physiology, 2008, 165: 932−941. doi: 10.1016/j.jplph.2007.04.006
    [2]
    Reymond P, Kunz B, Paul-Pletzer K, et al. Cloning of a cDNA encoding a plasma membrane associated, uronide binding phosphoprotein with physical properties similar to viral movement proteins[J]. The Plant Cell, 1996, 8(12): 2265−2276.
    [3]
    Raffaele S, Mongrand S, Gamas P, et al. Genome-wide annotation of remorins, a plant-specific protein family: evolutionary and functional perspectives[J]. Plant Physiology, 2007, 145(3): 593−600. doi: 10.1104/pp.107.108639
    [4]
    Reymond P, Weber H, Damond M, et al. Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis[J]. The Plant Cell, 2000, 12(5): 707−720. doi: 10.1105/tpc.12.5.707
    [5]
    Bray E A. Abscisic acid regulation of gene expression during water-deficit stress in the era of the Arabidopsis genome[J]. Plant Cell and Environment, 2002, 25(2): 153−161. doi: 10.1046/j.1365-3040.2002.00746.x
    [6]
    Reddy A R, Ramakrishna W, Sekhar A C, et al. Novel genes are enriched in normalized cDNA libraries from drought-stressed seedlings of rice (Oryza sativa L. subsp. indica cv. Nagina 22)[J]. Genome, 2002, 45(1): 204−211. doi: 10.1139/g01-114
    [7]
    Checker V G, Khurana P. Molecular and functional characterization of mulberry EST encoding remorin (MiREM) involved in abiotic stress[J]. Plant Cell Reports, 2013, 32(11): 1729−1741. doi: 10.1007/s00299-013-1483-5
    [8]
    Yue J, Cong L, Liu Y, et al. A remorin gene SiREM6, the target gene of SiARDP, from foxtail millet (Setaria italica) promotes high salt tolerance in transgenic Arabidopsis[J]. PLoS One, 2014, 9(6): e100772. doi: 10.1371/journal.pone.0100772
    [9]
    Chen S, Li J, Wang S, et al. Effects of NaCl on shoot growth, transpiration, ion compartmentation, and transport in regenerated plants of Populus euphratica and Populus tomentosa[J]. Canadian Journal of Forest Research, 2003, 33(6): 967−975. doi: 10.1139/x03-066
    [10]
    张会龙. 胡杨PeREMsPeJRL调控植物耐盐机制研究[D]. 北京: 北京林业大学, 2019.

    Zhang H L. The role of Populus euphratica PeREMs and PeJRL in the mediation of salt tolerance in higher plants[D]. Beijing: Beijing Forestry University, 2018.
    [11]
    Abbott A G, Ainsworth C C, Flavell R B. Characterization ofanther differentiation in cytoplasmic male sterile maize using aspecific isozyme system (esterase)[J]. Theoretical and Applied Genetics, 1984, 67: 469−473. doi: 10.1007/BF00263415
    [12]
    Kraus T E, Fletcher R A. Paclobutrazol protects wheat seedlings from heat and paraquat injury is detoxification of active oxygen involved[J]. Plant and Cell Physiology, 1994, 35: 45−52.
    [13]
    Shen Z D, Yao J, Sun J, et al. Populus euphratica HSF binds the promoter of WRKY1 to enhance salt tolerance[J]. Plant Science, 2015, 235: 89−100. doi: 10.1016/j.plantsci.2015.03.006
    [14]
    武霞, 张一南, 赵楠, 等. 过表达胡杨PeAnn1负调控拟南芥的抗旱性[J]. 北京林业大学学报, 2020, 42(6): 14−25. doi: 10.12171/j.1000-1522.20200031

    Wu X, Zhang Y N, Zhao N, et al. Overexpression of PeAnn1 from Populus euphratica negatively regulates drought resistance in transgenic Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2020, 42(6): 14−25. doi: 10.12171/j.1000-1522.20200031
    [15]
    Lang Y, Wang M, Zhang G C, et al. Experimental and simulated light responses of photosynthesis in leaves of three tree species under different soil water conditions[J]. Photosynthetica, 2013, 51(3): 370−378. doi: 10.1007/s11099-013-0036-z
    [16]
    魏清江, 冯芳芳, 马张正, 等. 干旱复水对柑橘幼苗叶片光合、叶绿素荧光和根系构型的影响[J]. 应用生态学报, 2018, 29(8): 2485−2492. doi: 10.13287/j.1001-9332.201808.028

    Wei Q J, Feng F F, Ma Z Z, et al. Effects of drought rehydration on leaf photosynthesis, chlorophyll fluorescence and root architecture of citrus seedlings[J]. Chinese Journal of Applied Ecology, 2018, 29(8): 2485−2492. doi: 10.13287/j.1001-9332.201808.028
    [17]
    张永刚, 韩梅, 姜雪, 等. 黄芩对干旱复水的生理生态响应[J]. 中国中药杂志, 2013, 38(22): 3845−3850.

    Zhang Y G, Han M, Jiang X, et al. Physiological ecology responses of Scutellaria baicalensis to drought rewatering[J]. China Journal of Chinese Materia Medica, 2013, 38(22): 3845−3850.
    [18]
    程彦伟, 韩建明, 徐晓燕, 等. 植物Remorin蛋白的研究进展[J]. 河南工业大学学报 (自然科学版), 2009, 30(4): 88−93.

    Cheng Y W, Han J M, Xu X Y, et al. The research progress of Remorin protein of plants[J]. Journal of Henan University of Technology (Natural Science Edition), 2009, 30(4): 88−93.
    [19]
    Vranova E, Inze D, van-Breusegem F. Signal transduction during oxidative stress[J]. Journal of Experimental Botany, 2002, 53(372): 1227−1236. doi: 10.1093/jxb/53.372.1227
    [20]
    Mahdieh M, Mostajeran A, Horie T, et al. Drought stress alters water relations and expression of PIP-type aquaporin genes in Nicotiana tabacum plants[J]. Plant and Cell Physiology, 2008, 49(5): 801−813. doi: 10.1093/pcp/pcn054
    [21]
    Gilroy S, Trewavas A. Signal processing and transduction in plant cells: the end of the beginning[J]. Nature Reviews Molecular Cell Biology, 2001, 2(4): 307−314. doi: 10.1038/35067109
    [22]
    顾学花, 孙莲强, 高波, 等. 施钙对干旱胁迫下花生生理特性、产量和品质的影响[J]. 应用生态学报, 2015, 26(5): 1433−1439. doi: 10.13287/j.1001-9332.20150319.015

    Gu X H, Sun L Q, Gao B, et al. Effects of calcium fertilizer application on peanut growth,physiological characteristics,yield and quality under drought stress[J]. Chinese Journal of Applied Ecology, 2015, 26(5): 1433−1439. doi: 10.13287/j.1001-9332.20150319.015
    [23]
    王顺喜. 玉米抗逆相关基因Zm-Remorin的克隆和功能分析[D]. 郑州: 河南农业大学, 2014.

    Wang S X. Cloning and function analysis of maize stress tolerance relate gene Zm-Remorin[D]. Zhengzhou: Henan Agricultural University, 2014.
    [24]
    Zhang H, Deng C, Wu X, et al. Populus euphratica remorin 6.5 activates plasma membrane H+-ATPases to mediate salt Tolerance[J]. Tree Physiolohy, 2020, 6(6): 731−745.
    [25]
    Sun J, Wang M J, Ding M Q, et al. H2O2 and cytosolic Ca2+ signals triggered by the PM H+-coupled transport system mediate K+/Na+ homeostasis in NaCl-stressed Populus euphratica cells[J]. Plant Cell Environment, 2010, 33(6): 943−958. doi: 10.1111/j.1365-3040.2010.02118.x
  • Related Articles

    [1]Fan Chunnan, Liu Qiang, Zheng Jinping, Guo Zhongling, Zhang Wentao, Liu Yinglong, Xie Zunjun, Ren Zengjun. Effects of logging intensity on restoration of carbon density in broadleaved Korean pine forest ecosystem[J]. Journal of Beijing Forestry University, 2022, 44(10): 33-42. DOI: 10.12171/j.1000-1522.20220190
    [2]Song Yuhan, Zhang Chen, Cai Tijiu, Ju Cunyong. Quantitative analysis of spatial structural characteristics of broadleaved Korean pine forest based on Voronoi diagram[J]. Journal of Beijing Forestry University, 2021, 43(1): 20-26. DOI: 10.12171/j.1000-1522.20200056
    [3]Li Minglu, Wu Zhaofei, Qiu Hua, Zhang Chunyu, Zhao Xiuhai. Short-term effects of tending felling on ecological services of mixed broadleaved-Korean pine forests at Jiaohe in Jilin Province, northeastern China[J]. Journal of Beijing Forestry University, 2019, 41(9): 40-49. DOI: 10.13332/j.1000-1522.20180442
    [4]Liu Zhili, Bi Lianzhu, Songx Song Guohua, Wang Quanbo, Liu Qi, Jin Guangze. Spatial heterogeneity of leaf area index in a typical mixed broadleaved-Korean pine forest in Xiaoxing'an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2018, 40(11): 1-11. DOI: 10.13332/j.1000-1522.20170468
    [5]HAN Da-xiao, JIN Guang-ze. Influences of topography and competition on DBH growth in different growth stages in a typical mixed broadleaved-Korean pine forest, northeastern China[J]. Journal of Beijing Forestry University, 2017, 39(1): 9-19. DOI: 10.13332/j.1000-1522.20160218
    [6]LIU Shuai, XIAO Cui, WANG Jun-wei, HOU Man-man, LIAO Jia-xing, FAN Xiu-hua. Interannual seedling dynamic and influencing factors on seedling survival of tree species in a broadleaved Korean pine (Pinus koraiensis) mixed forest in Changbai Mountains, northeastern China.[J]. Journal of Beijing Forestry University, 2016, 38(11): 57-66. DOI: 10.13332/j.1000-1522.20160012
    [7]SONG Xin-zhang, ZHANG Hui-ling, XIAO Wen-fa, GUO Zhong-ling, HUANG Zhi-lin, LEI Jing-pin. Seed bank in the logging gaps of broadleavedKorean pine mixed forests in Changbai Mountain, northeastern China.[J]. Journal of Beijing Forestry University, 2009, 31(2): 17-24.
    [8]SHI Ting-ting, GUAN De-xin, WU Jia-bing, ZHANG Mi, WANG An-zhi, JIN Chang-jie, HAN Shi-jie. Measurement of evapotranspiration above broadleaved-Korean pine forests in the Changbaishan Mountains with eddy covariance technique[J]. Journal of Beijing Forestry University, 2006, 28(6): 1-8.
    [9]ZHANG Chun-yu, ZHAO Xiu-hai, ZHENG Jing-ming. Size structure of canopy gaps in broadleaved Korean pine forests in the Changbai Mountains[J]. Journal of Beijing Forestry University, 2006, 28(4): 34-38.
    [10]ZHAO Xiao-song, GUAN De-xin, WU Jia-bing, JIN Chang-jie, HAN Shi-jie. Distribution of footprint and flux source area of the mixed forest of broad-leaved and Korean pine in Changbai Mountain[J]. Journal of Beijing Forestry University, 2005, 27(3): 17-23.
  • Cited by

    Periodical cited type(11)

    1. 施云凤,李文秀,贺军军,罗萍,张华林,张凤英. 甲基磺酸乙酯诱变对阳春砂仁出苗的影响. 热带农业科学. 2024(10): 47-51 .
    2. 崔晓彤,刘婉婷,张恒月,段乌拉,王君. 杨树派间远缘杂种小胡杨(Populus simonii×P.euphratica)组培快繁体系的构建. 分子植物育种. 2023(07): 2337-2343 .
    3. 王欢,曾琪瑶,王春胜,郭俊杰,曾杰. 油榄仁种胚高质量组培快繁体系. 中南林业科技大学学报. 2023(09): 53-61+88 .
    4. 李春兰. 毛白杨良种繁殖技术研究进展. 安徽农业科学. 2022(10): 22-24+45 .
    5. 王雷,李百和,赵培霞,韩鹏. 蒙古莸(Caryopteris mongholica)组培快繁体系的建立和优化. 分子植物育种. 2022(14): 4745-4754 .
    6. 陈耀兵,罗凯,李美东,黄秀芳,刘汉蓁,王水清,陈圣林. “鄂选1号”山桐子组培繁育体系构建. 北京林业大学学报. 2022(12): 23-31 . 本站查看
    7. 屈超,叶冬梅,郭欣,崔雁敏,朝勒蒙. 互叶醉鱼草茎段组织培养技术研究. 江苏林业科技. 2022(06): 15-19 .
    8. 马秋月,李倩中,李淑顺,朱璐,颜坤元,李淑娴,张斌,闻婧. 元宝枫组织培养及快速繁殖技术研究. 南京林业大学学报(自然科学版). 2021(02): 220-224 .
    9. 石进朝,陈博,陈兰芬,李彦侠. 阳光毛白杨带芽茎段再生体系的构建. 江苏农业科学. 2021(14): 50-55 .
    10. 梁艳,赵雪莹,白雪,刘德强,张妍,潘朋. PVP处理对黑皮油松外植体酚类物质形成及酶活性的影响. 林业科学. 2021(10): 166-174 .
    11. 王建新,吴志茹,冯光惠. 榆林沙区引种波尔卡树莓的组织培养与快速繁殖. 山西农业科学. 2019(12): 2078-2082 .

    Other cited types(2)

Catalog

    Article views (1217) PDF downloads (125) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return