Citation: | Cui Yanhong, Li Ling, Bai Qian, Yang Qing, Su Shuchai. Identification and expression analysis during ovule development of Hsp90 gene family in Castanea mollissima[J]. Journal of Beijing Forestry University, 2022, 44(11): 10-19. DOI: 10.12171/j.1000-1522.20210272 |
[1] |
Johnson J L, Brown C. Plasticity of the Hsp90 chaperone machine indivergent eukaryotic organisms[J]. Cell Stress Chaperones, 2009, 14: 83−94. doi: 10.1007/s12192-008-0058-9
|
[2] |
汤佳乐, 徐海, 苑平, 等. 植物Hsp90s与耐热性关系的研究进展[J]. 生物技术通报, 2020, 36(10): 173−179. doi: 10.13560/j.cnki.biotech.bull.1985.2020-0264
Tang J L, Xu H, Yuan P, et al. Advance in relationship between heat shock protein 90s and thermo-tolerance in plants[J]. Biotechnology Bulletin, 2020, 36(10): 173−179. doi: 10.13560/j.cnki.biotech.bull.1985.2020-0264
|
[3] |
Chen J, Gao T, Wan S, et al. Genome-wide identification, classification and expression analysis of the HSP gene superfamily in tea plant (Camellia sinensis)[J]. International Journal of Molecular Sciences, 2018, 19: 2633. doi: 10.3390/ijms19092633
|
[4] |
Hu W, Hu G, Han B. Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice[J]. Plant Science, 2009, 176(4): 583−590.
|
[5] |
Sangster T A, Queitsch C. The HSP90 chaperone complex, an emerging force in plant development and phenotypic plasticity[J]. Current Opinion in Plant Biology, 2005, 8: 86−92. doi: 10.1016/j.pbi.2004.11.012
|
[6] |
Johnson J L. Evolution and function of diverse Hsp90 homologs and cochaperone proteins[J]. Biochim Biophys Acta, 2012, 1823: 607−613. doi: 10.1016/j.bbamcr.2011.09.020
|
[7] |
Kravats A N, Hoskins J R, Reidy M, et al. Functional and physical interaction between yeast Hsp90 and Hsp70[J]. PNAS, 2018, 115(10): E2210.
|
[8] |
Mayer M P, Breton L L. Hsp90: breaking the symmetry[J]. Molecular Cell, 2015, 58: 8−20. doi: 10.1016/j.molcel.2015.02.022
|
[9] |
Jackson S E. Hsp90: structure and function[J]. Topics in Current Chemistry, 2013, 328: 155−240.
|
[10] |
Goldberg R B, de Paiva G, Yadegari R. Plant embryogenesis: zygote to seed[J]. Science, 1994, 266: 605−614. doi: 10.1126/science.266.5185.605
|
[11] |
Samakovli D, TicháT, VavrdováT, et al. HEAT SHOCK PROTEIN 90 proteins and YODA regulate main body axis formation during early embryogenesis[J]. Plant Physiology, 2021, 186(3): 1526−1544. doi: 10.1093/plphys/kiab171
|
[12] |
Luo A, Li X, Zhang X, et al. Identification of AtHsp90.6 involved in early embryogenesis and its structure prediction by molecular dynamics simulations[J/OL]. Royal Society Open Science, 2019, 6: 190219[2021−08−11]. http://dx.doi.org/10.1098/rsos.190219.
|
[13] |
Lee Y K, Kim S H, Hong C B, et al. Heat-shock protein 90 may be involved in differentiation of the female gametophytes in Griffithsia japonica (Ceramiales, Rhodophyta)[J]. Journal of Phycology, 1998, 34: 1017−1023. doi: 10.1046/j.1529-8817.1998.341017.x
|
[14] |
智研咨询集团. 2019年全球及中国板栗行业产量、进出口贸易分析[Z]. 中国产业信息, 2020−10−11.
Zhiyan Consulting Group. Analysis of global and Chinese chestnut industry output and import and export trade in 2019[Z]. Industry Information of China, 2020−10−11.
|
[15] |
李玲. 板栗受精作用与胚发育分子机理的初步研究[D]. 北京: 北京林业大学, 2020.
Li L. Basic study on the molecular mechanism of fertilization and embryonic development in Castanea mollissima BL.[D]. Beijing: Beijing Forestry University, 2020.
|
[16] |
杜国华, 周良骝, 谢中稳, 等. 板栗空苞机理的研究[J]. 果树学报, 1995, 12(1): 5−9. doi: 10.13925/j.cnki.gsxb.1995.01.002
Du G H, Zhou L L, Xie Z W, et al. Study on empty bud mechanism of chestnut[J]. Journal of Fruit Science, 1995, 12(1): 5−9. doi: 10.13925/j.cnki.gsxb.1995.01.002
|
[17] |
王倩. 品种配置对燕山板栗结实情况及果实品质影响研究[D]. 北京: 北京林业大学, 2012.
Wang Q. Effect on fruiting conditions and nut quality from variety configuration[D]. Beijing: Beijing Forestry University, 2012.
|
[18] |
李玲, 苏淑钗, 寇艳茹. 板栗座果及果实早期发育与内源激素质量分数的关系[J]. 东北林业大学学报, 2020, 48(5): 55−61. doi: 10.3969/j.issn.1000-5382.2020.05.011
Li L, Su S C, Kou Y R. Fruit-set and early fruit development in chestnut are associated with endogenous hormones contents[J]. Journal of Northeast Forestry University, 2020, 48(5): 55−61. doi: 10.3969/j.issn.1000-5382.2020.05.011
|
[19] |
Letunic I, Khedkar S, Bork P. SMART: recent updates, new developments and status in 2020[J]. Nucleic Acids Research, 2021, 49(D1): D458−D460. doi: 10.1093/nar/gkaa937
|
[20] |
Chen C, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Molecular Plant, 2020, 13(8): 1194−1202. doi: 10.1016/j.molp.2020.06.009
|
[21] |
刘阳. 板栗花发育相关 MADS-box 基因的挖掘和表达分析[D]. 北京: 北京农学院, 2019.
Liu Y. Mining and expression analysis of MADS-box genes related to flower development of Castanea mollissima [D]. Beijing: Beijing University of Agriculture, 2019.
|
[22] |
Kim D, Langmead B, Salzberg S L. HISAT: a fast spliced aligner with low memory requirements[J]. Nature Methods, 2015, 12(4): 357−360. doi: 10.1038/nmeth.3317
|
[23] |
Pertea M, Pertea G M, Antonescu C M, et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads[J]. Nature Biotechnology, 2015, 33(3): 290−295. doi: 10.1038/nbt.3122
|
[24] |
Mayer M P, Bukau B. Molecular chaperones: the busy life of Hsp90[J]. Current Biology, 1999, 9: R322−R325. doi: 10.1016/S0960-9822(99)80203-6
|
[25] |
Krishna P, Gloor G. The Hsp90 family of proteins in Arabidopsis thaliana[J]. Cell Stress Chaperones, 2001, 6: 238−246. doi: 10.1379/1466-1268(2001)006<0238:THFOPI>2.0.CO;2
|
[26] |
张海. 水稻OsHSP90基因家族功能研究[D]. 雅安: 四川农业大学, 2016.
Zhang H. Function analysis of the OsHSP90 family in rice[D]. Ya’an: Sichuan Agricultural University, 2016.
|
[27] |
Zhang J, Liu B B, Zhang L, et al. Genome-wide analysis of the Populus Hsp90 gene family reveals differential expression patterns, localization, and heat stress responses[J]. BMC Genomics, 2013, 13: 532.
|
[28] |
杜志如. 水稻热激蛋白Hsp90基因的克隆及互作蛋白的筛选[D]. 雅安: 四川农业大学, 2008.
Du Z R. Cloning of heat shock protein90 gene from rice and screening for interacted proteins[D]. Ya’an: Sichuan Agriculture University, 2008.
|
[29] |
Feng J, Fan P, Jiang P, et al. Chloroplast-targeted Hsp90 plays essential roles in plastid development and embryogenesis in Arabidopsis possibly linking with VIPP1[J]. Plant Physiology, 2014, 150(2): 292−307. doi: 10.1111/ppl.12083
|
[30] |
Panaretou B, Prodromou C, Roe S M, et al. ATP binding and hydrolysis areessential to the function of the Hsp90 molecular chaperone in vivo[J]. The EMBO Journal, 1998, 17(16): 4829−4836. doi: 10.1093/emboj/17.16.4829
|
[31] |
袁凌云, 吴颖, 张利婷, 等. 白菜HSP90基因家族的鉴定及表达分析[J/OL]. 分子植物育种, 2012[2021−06−30]. https://kns.cnki.net/kcms/detail/46.1068.S.20210311.1553.004.html.
Yuan L Y, Wu Y, Zhang L T, et al. Identification and expression analysis of HSP90 gene family in Chinese cabbage[J/OL]. Molecular Plant Breeding, 2012[2021−06−30]. https://kns.cnki.net/kcms/detail/46.1068.S.20210311.1553.004.html.
|
[32] |
刘云飞, 万红建, 杨悦俭, 等. 番茄热激蛋白90的全基因组鉴定及分析[J]. 遗传, 2014, 36(10): 1043−1052.
Liu Y F, Wan H J, Yang Y J, et al. Genome-wide identification and analysis of heat shock protein 90 in tomato[J]. Hereditas, 2014, 36(10): 1043−1052.
|
[33] |
Song Z P, Pan F L, Yang C, et al. Genome-wide identification andexpression analysis of HSP90 gene family in Nicotiana tabacum[J/OL]. BMC Genet, 2019, 20(1): 35[2021−06−30]. https://pubmed.ncbi.nlm.nih.gov/30890142/.
|
[34] |
Collins G G, Nie X L, Saltveit M E. Heat shock protein and chilling sensitivity of mung bean hypcotyls[J]. Journal Experimental Botany, 1995, 46(7): 795−802. doi: 10.1093/jxb/46.7.795
|
[35] |
Sabehat A, Weiss D, Lurie S, et al. The correlation between heat-shock protein accumulation and persistence and chilling tolerance in tomato fruit[J]. Plant Physiology, 1996, 110: 531−537. doi: 10.1104/pp.110.2.531
|
[36] |
Gilmour S J, Hajela R K, Thomashow M F. Cold acclimation in Arabidopsis thaliana[J]. Plant Physiology, 1988, 87: 745−750. doi: 10.1104/pp.87.3.745
|
[37] |
Prasinos C, Krampis K, Samakovli D, et al. Tight regulation of expression of two Arabidopsis cytosolic Hsp90 genes during embryo development[J]. Journal of Experimental Botany, 2005, 56(412): 633−644. doi: 10.1093/jxb/eri035
|
[38] |
Sangster T A, Bahrami A, Wilczek A, et al. Phenotypic diversity and altered environmental plasticity in Arabidopsis thaliana with reduced Hsp90 levels[J/OL]. PLoS One, 2007, 2(7): e648[2021−06−30]. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0000648.
|
1. |
林鸿裕,卢桂宁. 基于模糊逻辑综合评判的垃圾处理厂选址仿真. 计算机仿真. 2024(01): 513-517 .
![]() | |
2. |
刘子晴,葛韵宇. 北京第二道绿化隔离地区空间潜力分析及郊野公园选址研究. 北京规划建设. 2024(01): 40-45 .
![]() | |
3. |
黄友慧,辛儒鸿,李凯. 红枫湖镇生态环境质量评价及修复优先区识别研究. 西南林业大学学报(自然科学). 2024(04): 64-72 .
![]() | |
4. |
王菲,孙晨,姜雁林,马晓燕,冯丽. 北京市第二道绿化隔离带地区生态敏感性评价. 北京农学院学报. 2023(02): 105-110 .
![]() | |
5. |
刘烨琪. 基于情景规划的杭州郊野公园选址研究. 现代园艺. 2023(19): 99-102 .
![]() | |
6. |
葛韵宇,李雄. 基于碳汇和游憩服务协同提升的北京市第二道绿化隔离地区郊野公园环空间布局优化. 北京林业大学学报. 2022(10): 142-154 .
![]() |