• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Yang Hongda, Wang Ning, Meng Xinmiao, Zhu Xudong, Gao Ying. Study on process parameters and mechanism of bamboo dowel rotation welding[J]. Journal of Beijing Forestry University, 2022, 44(2): 141-150. DOI: 10.12171/j.1000-1522.20210288
Citation: Yang Hongda, Wang Ning, Meng Xinmiao, Zhu Xudong, Gao Ying. Study on process parameters and mechanism of bamboo dowel rotation welding[J]. Journal of Beijing Forestry University, 2022, 44(2): 141-150. DOI: 10.12171/j.1000-1522.20210288

Study on process parameters and mechanism of bamboo dowel rotation welding

More Information
  • Received Date: July 30, 2021
  • Revised Date: December 13, 2021
  • Accepted Date: December 13, 2021
  • Available Online: December 17, 2021
  • Published Date: February 24, 2022
  •   Objective  Dowel rotation welding is a new type of green connection technology in wood structures and furniture. There are few studies on rotary welding of bamboo tenon at home and abroad, the optimal welding process parameters of bamboo dowel are unknown. The difference between bamboo dowel and wood dowel in rotation welding also needs to be studied.
      Method  Welded joints were manufactured by rotation welding with bamboo dowels and spruce substrate. The withdraw resistance of joints was tested to get better process parameters for bamboo dowel rotation welding. The ratio of substrate predrilled to bamboo dowel diameter, bamboo dowel rotation rate, bamboo dowel moisture content and bamboo dowel insertion rate were selected as parameters for orthogonal tests. Single-factor tests were designed based on the results of orthogonal tests for three factors: the hole/dowel diameter, rotation rate and insertion rate. Compared with beech dowels, temperature monitoring, scanning electron microscopy and infrared spectroscopy were taken to the weld layer.
      Result  According to the orthogonal and single-factor tests , the optimal process parameters were followings: the moisture content of bamboo dowel of 12%, rotation rate of 1 270 r/min, the hole/dowel diameter of 7/10 and insertion rate of 600 mm/min, the average withdraw resistance of this solution was 4 588 N. The order of influence of the factors in single-factor tests was hole/dowel diameter > insertion rate > rotation rate. Beech dowel was selected as control, the withdraw resistance of bamboo dowel rotation welding joints increased by 49.3% compared with beech dowel. The temperature monitoring results showed that the peak temperature of bamboo dowel welded layer was greater than that of wood dowel welded layer. Scanning electron microscope observation of the welded layer on the surface of the dowel revealed that bamboo fibers were intertwined on the surface of dowel, and bamboo fiber was less likely to break than wood fiber when rotating and welding. The bamboo fibers in welded layer became entangled with each other, which was not observed in the welded layer of wood dowels. Infrared spectroscopic analysis of the weld layer found that the bamboo dowel rotation welding mechanism was similar to that of wood dowel, significant thermal degradation of hemicellulose during the welding process, the relative content of lignin increased and cellulose content was almost unchanged.
      Conclusion  Compared with orthogonal tests, the welding process parameters are further optimized by single factor tests, and the optimum welding process parameters of bamboo dowel are obtained. The rotation welding mechanism of bamboo dowel is similar to wood dowel, but bamboo dowel can generate higher temperatures during rotary welding and the welded layers have unique intertwining of fibers, and the hemicellulose of bamboo dowel is less degraded during the welding process. Using bamboo dowels to replace wood dowels for rotation welding can greatly improve the withdraw resistance of the connected nodes.
  • [1]
    Leban J M, Pizzi A, Properzi M, et al. Wood welding: a challenging alternative to conventional wood gluing[J]. Scandinavian Journal of Forest Research, 2005, 20(6): 534−538. doi: 10.1080/02827580500432305
    [2]
    胡进波, 苌姗姗. 圆棒榫旋转木材焊接技术及其在实木家具装配中的应用与思考[J]. 家具与室内装饰, 2012(9): 106−108.

    Hu J B, Chang S S. Applying and reflection of the technique of rotational wood dowel welding in the assemblage of solid wood furniture[J]. Furniture & Interior Design, 2012(9): 106−108.
    [3]
    周晓剑, Pizzi A, 杜官本. 木材焊接技术(无胶胶合)的研究进展[J]. 中国胶粘剂, 2014, 23(6): 47−53.

    Zhou X J, Pizzi A, Du G B. Research progress of wood welding technology (bonding without adhesive)[J]. China Adhesives, 2014, 23(6): 47−53.
    [4]
    罗翔亚, 朱旭东, 张吉荣, 等. 木材焊接理论研究及技术进展[J]. 西北林学院学报, 2017, 32(6): 270−275, 281. doi: 10.3969/j.issn.1001-7461.2017.06.43

    Luo X Y, Zhu X D, Zhang J R, et al. Theoretical research and technical progress of wood welding[J]. Journal of Northwest Forestry University, 2017, 32(6): 270−275, 281. doi: 10.3969/j.issn.1001-7461.2017.06.43
    [5]
    王洁, 靳慧. 木材摩擦焊接技术的研究进展[J]. 西北林学院学报, 2019, 34(6): 191−196,258. doi: 10.3969/j.issn.1001-7461.2019.06.30

    Wang J, Jin H. Research progress of wood friction welding technology[J]. Journal of Northwest Forestry University, 2019, 34(6): 191−196,258. doi: 10.3969/j.issn.1001-7461.2019.06.30
    [6]
    Pizzi A, Leban J M, Kanazawa F, et al. Wood dowel bonding by high-speed rotation welding[J]. Journal of Adhesion Science and Technology, 2004, 18(11): 1263−1278. doi: 10.1163/1568561041588192
    [7]
    Kanazawa F, Pizzi A, Properzi M, et al. Parameters influencing wood-dowel welding by high-speed rotation[J]. Journal of Adhesion Science and Technology, 2005, 19(12): 1025−1038. doi: 10.1163/156856105774382444
    [8]
    Leban J M, Mansouri H R, Omrani P, et al. Dependence of dowel welding on rotation rate[J]. Holz Als Roh-Und Werkstoff, 2008, 66(3): 241−242. doi: 10.1007/s00107-008-0228-6
    [9]
    Rodriguez G, Diouf P, Blanchet P, et al. Wood-dowel bonding by high-speed rotation welding-application to two canadian hardwood species[J]. Journal of Adhesion Science and Technology, 2010, 24(8−10): 1423−1436. doi: 10.1163/016942410X501025
    [10]
    Belleville B, Stevanovic T, Pizzi A, et al. Determination of optimal wood-dowel welding parameters for two north american hardwood species[J]. Journal of Adhesion Science and Technology, 2013, 27(5−6): 566−576. doi: 10.1080/01694243.2012.687596
    [11]
    张吉荣, 高颖, 徐霖, 等. 落叶松为基材的木榫旋转焊接性能及机理研究[J]. 西北林学院学报, 2017, 32(4): 229−234. doi: 10.3969/j.issn.1001-7461.2017.04.38

    Zhang J R, Gao Y, Xu L, et al. Properties and mechanism of larch with wood-dowel rotation welding[J]. Journal of Northwest Forestry University, 2017, 32(4): 229−234. doi: 10.3969/j.issn.1001-7461.2017.04.38
    [12]
    刘恪. 压缩木销旋转摩擦焊接抗拔性能研究[D]. 大连: 大连理工大学, 2019.

    Liu K. Study on pullout resistance of compressed wooden dowel rotary friction welding[D]. Dalian: Dalian University of Technology, 2019.
    [13]
    朱海, 陈家瑞, 张剑, 等. 木榫旋转摩擦焊接抗拉拔力的影响因素[J]. 东北林业大学学报, 2020, 48(6): 75−79. doi: 10.3969/j.issn.1000-5382.2020.06.015

    Zhu H, Chen J R, Zhang J, et al. Influencing factors of pullout resistance on wood-dowel rotary friction welding[J]. Journal of Northeast Forestry University, 2020, 48(6): 75−79. doi: 10.3969/j.issn.1000-5382.2020.06.015
    [14]
    Hu J B, Pizzi A. Wood-bamboo-wood laminated composite lumber jointed by linear vibration–friction welding[J]. European Journal of Wood and Wood Products, 2013, 71(5): 683−686. doi: 10.1007/s00107-013-0714-3
    [15]
    Zhang H Y, Pizzi A, Lu X N, et al. Optimization of tensile shear strength of linear mechanically welded outer-to-inner flattened moso bamboo (phyllostachys pubescens)[J]. Bioresources, 2014, 9(2): 2500−2508.
    [16]
    Zhang H Y, Pizzi A, Zhou X H, et al. The study of linear vibrational welding of moso bamboo[J]. Journal of Adhesion Science and Technology, 2018, 32(1): 1−10. doi: 10.1080/01694243.2017.1322767
    [17]
    Li S X, Zhang H Y, Shu B Q, et al. Study on the bonding performance of the moso bamboo dowel welded to a poplar substrate joint by high-speed rotation[J]. Journal of Renewable Materials, 2021, 9(7): 1225−1237. doi: 10.32604/jrm.2021.014364
    [18]
    Renaud A. Minimalist Z chair assembly by rotational dowel welding[J]. European Journal of Wood and Wood Products, 2009, 67(1): 111−112. doi: 10.1007/s00107-008-0264-2
    [19]
    Segovia C, Pizzi A. Performance of dowel-welded T-joints for wood furniture[J]. Journal of Adhesion Science and Technology, 2009, 23(16): 2073−2084. doi: 10.1163/016942409X12526743387926
    [20]
    Segovia C, Pizzi A. Performance of dowel-welded wood furniture linear joints[J]. Journal of Adhesion Science and Technology, 2009, 23(9): 1293−1301. doi: 10.1163/156856109X434017
    [21]
    Segovia C, Renaud A, Pizzi A. Performance of dowel-welded L-joints for wood furniture[J]. Journal of Adhesion Science and Technology, 2011, 25(15): 1829−1837. doi: 10.1163/016942410X525722
    [22]
    O’Loinsigh C, Oudjene M, Ait-Aider H, et al. Experimental study of timber-to-timber composite beam using welded-through wood dowels[J]. Construction and Building Materials, 2012, 36: 245−250. doi: 10.1016/j.conbuildmat.2012.04.118
    [23]
    刘一星, 赵广杰. 木材学[M]. 北京: 中国林业出版社, 2004.

    Liu Y X, Zhao G J. Wood science[M]. Beijing: China Forestry Publishing House, 2004.
    [24]
    Kuriyama A. On the changes in the chemical composition of wood within the temperature range up to 200°C[J]. Journal of the Society of Materials Science, 1967, 16: 772−776. doi: 10.2472/jsms.16.772
    [25]
    尹维, 田煜, 陶大帅, 等. 天然树木和竹子纤维材料的力学性能及仿生研究进展[J]. 科学通报, 2015, 60(31): 2949−2962. doi: 10.1360/N972014-01318

    Yin W, Tian Y, Tao D S, et al. Research progresses of mechanical properties of natural wood and bamboo fiber composites and their biomimetics[J]. Chinese Science Bulletin, 2015, 60(31): 2949−2962. doi: 10.1360/N972014-01318
    [26]
    田根林. 竹纤维力学性能的主要影响因素研究[D]. 北京: 中国林业科学研究院, 2015.

    Tian G L. The main influence factors of bamboo fiber mechanical properties[D]. Beijing: Chinese Academy of Forestry, 2015.
    [27]
    蒋建新, 杨中开, 朱莉伟, 等. 竹纤维结构及其性能研究[J]. 北京林业大学学报, 2008, 30(1): 128−132. doi: 10.3321/j.issn:1000-1522.2008.01.023

    Jiang J X, Yang Z K, Zhu L W, et al. Structure and property of bamboo fiber[J]. Journal of Beijing Forestry University, 2008, 30(1): 128−132. doi: 10.3321/j.issn:1000-1522.2008.01.023
    [28]
    陈红. 竹纤维细胞壁结构特征研究[D]. 北京: 中国林业科学研究院, 2014.

    Chen H. Study on the structural characteristics of bamboo cell wall[D]. Beijing: Chinese Academy of Forestry, 2014.
    [29]
    李贤军, 刘元, 高建民, 等. 高温热处理木材的FTIR和XRD分析[J]. 北京林业大学学报, 2009, 31(增刊1): 104−107.

    Li X J, Liu Y, Gao J M, et al. Characteristics of FTIR and XRD for wood with high-temperature heating treatment[J]. Journal of Beijing Forestry University, 2009, 31(Suppl.1): 104−107.
    [30]
    王洁瑛, 赵广杰, 中野隆人. 热处理过程中杉木压缩木材的材色及红外光谱[J]. 北京林业大学学报, 2001, 23(1): 59−64. doi: 10.3321/j.issn:1000-1522.2001.01.015

    Wang J Y, Zhao G J, Takato N. Change of brightness, chromatism and infra red spectra of compressed China fir wood during heat treatment[J]. Journal of Beijing Forestry University, 2001, 23(1): 59−64. doi: 10.3321/j.issn:1000-1522.2001.01.015
    [31]
    胡亿明. 木质生物质各组分热解过程和热力学特性研究[D]. 北京: 中国林业科学研究院, 2013.

    Hu Y M. Pyrolysis process and thermodynamic characteristics of lignocellulosic biomass components[D]. Beijing: Chinese Academy of Forestry, 2013.
    [32]
    李坚. 木材波谱学[M]. 北京: 科学出版社, 2008: 98−100.

    Li J. Wood spectroscopy[M]. Beijing: Science Press, 2008: 98−100.
    [33]
    于文吉, 余养伦, 江泽慧. 不同处理竹材的表面性能分析[J]. 北京林业大学学报, 2007, 29(1): 136−140. doi: 10.3321/j.issn:1000-1522.2007.01.025

    Yu W J, Yu Y L, Jiang Z H. Surface chemical performance of bamboo wood treated by different methods[J]. Journal of Beijing Forestry University, 2007, 29(1): 136−140. doi: 10.3321/j.issn:1000-1522.2007.01.025
  • Related Articles

    [1]Ma Ruiyu, Wang Ning, Gao Ying, Meng Xinmiao, Zhu Xudong, Yang Juan. Shear performance of beech dowel rotary welded SPF substrate joints with different structure dimensions[J]. Journal of Beijing Forestry University, 2024, 46(5): 143-153. DOI: 10.12171/j.1000-1522.20240059
    [2]Zhang Pingdong. Research progress on the mechanism of 2n gamete occurrence in plants[J]. Journal of Beijing Forestry University, 2023, 45(7): 1-8. DOI: 10.12171/j.1000-1522.20220050
    [3]Yang Yaqi, Wang Shengying, Geng Jinguang, Liu Yang, Zhang Jian, Luo Bin. Abrasive belt wear mechanism of sanding Manchurian ash[J]. Journal of Beijing Forestry University, 2019, 41(8): 138-146. DOI: 10.13332/j.1000-1522.20190136
    [4]Luo Bei, He Rui, Yang Yan. A review of physiological function of sapwood and formation mechanism of heartwood[J]. Journal of Beijing Forestry University, 2018, 40(1): 120-129. DOI: 10.13332/j.1000-1522.20170295
    [5]WEI Bao, DING Guo-dong, WU Bin, ZHANG Yu-qing, BAO Yan-feng, GAO Guang-lei1, SHI Hui-shu, ZHAO Jin-hong. Windbreak mechanism under different shrub cover conditions.[J]. Journal of Beijing Forestry University, 2013, 35(5): 73-78.
    [6]TIAN Zhen-nong, ZHANG Le-wen. Macro-mechanical model and fracture mechanism of wood.[J]. Journal of Beijing Forestry University, 2010, 32(2): 153-156.
    [7]FU Shen-yuan, CHENG Shu-na, MA Ling-fei, YU You-ming. Copolymerization mechanism and properties of melaminephenolformaldehyde resin[J]. Journal of Beijing Forestry University, 2008, 30(3): 107-112.
    [8]LI Jian-zhang, LI Wen-jun, ZHOU Wen-rui, FAN Dong-bin, GAO Wei. Curing mechanism of urea-formaldehyde resin and its application[J]. Journal of Beijing Forestry University, 2007, 29(4): 90-94. DOI: 10.13332/j.1000-1522.2007.04.021
    [9]ZHANG Li-ping, SUN Chang-xia. Adsorption mechanism of macroporous adsorption resin of plant tannin[J]. Journal of Beijing Forestry University, 2006, 28(4): 6-11.
    [10]LI Hong, YU Zhi-ming. Combinative mechanism between dyestuff and wood[J]. Journal of Beijing Forestry University, 2005, 27(4): 78-81.
  • Cited by

    Periodical cited type(17)

    1. 谢微,尹若勇,温梦玲,张宝津,邓小梅. 诗琳通木兰对干旱胁迫的生理响应. 林业与环境科学. 2025(01): 111-118 .
    2. 杜少波,毛晓宁,鄂崇毅,谢惠春. 两种柳属植物在干旱胁迫下的生理响应研究. 内蒙古农业大学学报(自然科学版). 2025(02): 29-37 .
    3. 冯柳俊,陈志强,陈志彪,罗立津,王健. 南方红壤侵蚀区芒萁对聚乙二醇6000模拟干旱胁迫的响应. 安徽农业科学. 2023(20): 66-69+108 .
    4. 梁青兰,韩友吉,乔艳辉,谢孔安,李双云,董玉峰,李善文,张升祥. 干旱胁迫对黑杨派无性系生长及生理特性的影响. 北京林业大学学报. 2023(10): 81-89 . 本站查看
    5. 张忠辉,王文涛,包广道,刘婷,罗也,刘志越. 我国杨树抗旱性研究进展. 吉林林业科技. 2023(06): 35-41 .
    6. 苑正赛,乔艳辉,王丽,王相娥,姚俊修,李善文,韩友吉,董玉峰. 镉胁迫对黑杨派无性系生物量及镉离子含量的影响. 北京林业大学学报. 2021(12): 38-46 . 本站查看
    7. 黄海霞,连转红,王亮,杨琦琦,魏振艳,马彦军,张金霞. 裸果木渗透调节物质和抗氧化酶活性对干旱的响应. 干旱区研究. 2020(01): 227-235 .
    8. 姚俊修,乔艳辉,杨庆山,仲伟国,李庆华,董玉峰,李善文,吴德军. 重金属镉胁迫对黑杨派无性系光合生理及生长的影响. 西北林学院学报. 2020(02): 40-46+107 .
    9. 姚俊修,陈甘牛,李善文,乔艳辉,仲伟国,李庆华,董玉峰,吴德军. 镉胁迫对黑杨派无性系生理生化特性及生长的影响. 北京林业大学学报. 2020(04): 12-20 . 本站查看
    10. 郑涛,樊军锋,高建社,周永学. 美洲黑杨无性系抗旱性综合评价研究. 西北林学院学报. 2019(02): 98-104 .
    11. 郑涛,樊军锋,高建社,周永学. 11个白杨派无性系抗旱性综合评价. 西北林学院学报. 2019(04): 101-106 .
    12. 张文婷,王子邦. 6种常见彩叶灌木对干旱胁迫的生理响应. 江苏农业科学. 2018(08): 123-126 .
    13. 王曦,胡红玲,胡庭兴,张城浩,王鑫,刘丹. 干旱胁迫对桢楠幼树渗透调节与活性氧代谢的影响及施氮的缓解效应. 植物生态学报. 2018(02): 240-251 .
    14. 苏丹,殷小琳,董智,慕德宇,张晓晓,贾淑友. 白榆无性系生长特性及离子分布对NaCl胁迫的响应. 北京林业大学学报. 2017(05): 48-57 . 本站查看
    15. 杨传宝,孙超,李善文,姚俊修,刘敬国,矫兴杰. 白杨派无性系苗期耐盐性综合评价及筛选. 北京林业大学学报. 2017(10): 24-32 . 本站查看
    16. 邓辉茗,龙聪颖,蔡仕珍,苏明洁,王小梅. PEG-6000模拟干旱协迫对大蓟叶片生理特性的影响. 西北植物学报. 2017(05): 959-964 .
    17. 崔博文,乔光,范付华,丁贵杰,文晓鹏. 不同种源马尾松种质耐低磷的主成分与灰色关联度分析. 西南大学学报(自然科学版). 2017(08): 49-56 .

    Other cited types(15)

Catalog

    Article views (805) PDF downloads (55) Cited by(32)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return