Citation: | Yao Junxiu, Chen Ganniu, Li Shanwen, Qiao Yanhui, Zhong Weiguo, Li Qinghua, Dong Yufeng, Wu Dejun. Physiological and biochemical properties and growth of Aigeiros clones under cadmium stress[J]. Journal of Beijing Forestry University, 2020, 42(4): 12-20. DOI: 10.12171/j.1000-1522.20190462 |
[1] |
Hu H, Jin Q, Kavan P. A study of heavy metal pollution in China: current status, pollution-control policies and countermeasures[J]. Sustainability, 2014, 6(9): 5820−5838. doi: 10.3390/su6095820
|
[2] |
Ponsbranchu E, Ayrault S, Roybarman M, et al. Three centuries of heavy metal pollution in Paris (France) recorded by urban speleothems[J]. Science of the Total Environment, 2015, 518−519: 86−96. doi: 10.1016/j.scitotenv.2015.02.071
|
[3] |
杨海琳. 土壤重金属污染修复的研究[J]. 环境科学与管理, 2009, 34(6):130−135. doi: 10.3969/j.issn.1673-1212.2009.06.038
Yang H L. Remediation of heavy metal polluted soil[J]. Environmental Science and Management, 2009, 34(6): 130−135. doi: 10.3969/j.issn.1673-1212.2009.06.038
|
[4] |
吴双桃. 镉污染土壤治理的研究进展[J]. 广东化工, 2005(4):40−41, 50. doi: 10.3969/j.issn.1007-1865.2005.04.015
Wu S T. The latest development about the remedy of Cd contaminated soil[J]. Guangdong Chemical Industry, 2005(4): 40−41, 50. doi: 10.3969/j.issn.1007-1865.2005.04.015
|
[5] |
王娜, 魏样. 土壤重金属镉污染来源及其修复技术探究[J]. 环境与发展, 2019, 31(8):55−56, 58.
Wang N, Wei Y. Study on sources of heavy metal cadmium pollution in soil and its remediation technology[J]. Environment and Development, 2019, 31(8): 55−56, 58.
|
[6] |
周东美, 邓昌芬. 重金属污染土壤的电动修复技术研究进展[J]. 农业环境科学学报, 2003, 22(4):505−508. doi: 10.3321/j.issn:1672-2043.2003.04.031
Zhou D M, Deng C F. Review: electrokinetic remediation of heavy metal contaminated soil[J]. Journal of Agro-environment, Science, 2003, 22(4): 505−508. doi: 10.3321/j.issn:1672-2043.2003.04.031
|
[7] |
樊霆, 叶文玲, 陈海燕, 等. 农田土壤重金属污染状况及修复技术研究[J]. 生态环境, 2013, 22(10):1727−1736.
Fan T, Ye W L, Chen H Y, et al. Review on contamination and remediation technology of heavy metal in agricultural soil[J]. Ecology and Environmental Sciences, 2013, 22(10): 1727−1736.
|
[8] |
Reysens I L, Blust R, De Temme R, et al. Clonal variation in heavy metal accumulation and biomass production in a poplar coppice culture(I): seasonal variation in leaf, wood and bark concentrations[J]. Environmental Pollution, 2004, 131(3): 485−494. doi: 10.1016/j.envpol.2004.02.009
|
[9] |
Mihucz V G, Csog A, Fodor F, et al. Impact of two iron (Ⅲ) chelators on the iron, cadmium, lead and nickel accumulation in poplar grown under heavy metal stress in hydroponics[J]. Journal of Plant Physiology, 2012, 169(6): 561−566. doi: 10.1016/j.jplph.2011.12.012
|
[10] |
Elobeid M, Gobel C, Feussne R I, et al. Cadmium interferes with auxin physiology and lignification in poplar[J]. Journal of Experimental Botany, 2012, 63(3): 1413−1421. doi: 10.1093/jxb/err384
|
[11] |
姜岳忠, 李善文, 秦光华, 等. 黑杨派无性系区域化试验初报[J]. 林业科学, 2006, 42(12):143−147. doi: 10.3321/j.issn:1001-7488.2006.12.026
Jiang Y Z, Li S W, Qin G H, et al. Regional test of poplar clones in section Aigeiros[J]. Scientia Silvae Sinicae, 2006, 42(12): 143−147. doi: 10.3321/j.issn:1001-7488.2006.12.026
|
[12] |
张春燕, 王瑞刚, 范稚莲, 等. 杨树和柳树富集Cd、Zn、Pb的品种差异性[J]. 农业环境科学学报, 2013, 32(3):530−538.
Zhang C Y, Wang R G, Fan Z L, et al. Difference in cadmium, zinc and lead accumulation of poplar and willow species[J]. Journal of Agro-Environment Science, 2013, 32(3): 530−538.
|
[13] |
何佳丽. 杨树对重金属镉胁迫的分子生理响应机制研究[D]. 杨凌: 西北农林科技大学, 2014.
He J L.A study on mechanisms of molecular and physiological responses to cadmium in Populus species[D]. Yangling: Northwest A&F University, 2014.
|
[14] |
郑慧芳. 镉胁迫下杨树耐受性和次生生长的氮、硅调控[D]. 杨凌: 西北农林科技大学, 2018.
Zheng H F.The regulation of the tolerance of poplar and the secondary growth of nitrogen and silicon under cadmium stress[D]. Yangling: Northwest A&F University, 2018.
|
[15] |
杨传宝, 孙超, 李善文, 等. 白杨派无性系苗期耐盐性综合评价及筛选[J]. 北京林业大学学报, 2017, 39(10):24−32.
Yang C B, Sun C, Li S W, et al. Comprehensive evaluation and screening of salt tolerance for Leuce clones at nursery stage[J]. Journal of Beijing Forestry University, 2017, 39(10): 24−32.
|
[16] |
杨传宝, 倪惠菁, 李善文, 等. 白杨派无性系苗期对NaHCO3胁迫的生长生理响应及耐盐碱性综合评价[J]. 植物生理学报, 2016, 52(10):1555−1564.
Yang C B, Ni H J, Li S W, et al. Growth and physiological responses to NaHCO3 stress and comprehensive evaluation on saline-alkaline tolerance in Leuce clones at seedling stage[J]. Plant Physiology Journal, 2016, 52(10): 1555−1564.
|
[17] |
杨传宝, 姚俊修, 李善文, 等. 白杨派无性系苗期对干旱胁迫的生长生理响应及抗旱性综合评价[J]. 北京林业大学学报, 2016, 38(5):58−66.
Yang C B, Yao J X, Li S W, et al. Growth and physiological responses to drought stress and comprehensive evaluation on drought tolerance in Leuce clones at nursery stage[J]. Journal of Beijing Forestry University, 2016, 38(5): 58−66.
|
[18] |
万雪琴, 张帆, 夏新莉, 等. 镉胁迫对杨树矿质营养吸收和分配的影响[J]. 林业科学, 2009, 45(7):46−51.
Wan X Q, Zhang F, Xia X L, et al. Effects of cadmium stress on absorption and distribution of mineral nutrients in poplar plants[J]. Scientia Silvae Sinicae, 2009, 45(7): 46−51.
|
[19] |
李合生. 现代植物生理学[M]. 北京: 高等教育出版社, 2012: 358.
Li H S. Modern plant physiology[M]. Beijing: Higher Education Press, 2012: 358.
|
[20] |
赵世杰, 史国安, 董新纯. 植物生理学试验指导[M]. 北京: 中国农业科学技术出版社, 2002: 83−135.
Zhao S J, Shi G A, Dong X C. Guidance for plant physiological tests[M]. Beijing: China Agricultural Science and Technology Press, 2002: 83−135.
|
[21] |
张宪政. 植物叶绿素含量测定−丙酮乙醇混合液法[J]. 辽宁农业科学, 1986(3):23−25.
Zhang X Z. Determination of plant chlorophyll content by acetone-ethanol mixture method[J]. Liaoning Agricultural Sciences, 1986(3): 23−25.
|
[22] |
李子芳, 刘惠芬, 熊肖霞, 等. 镉胁迫对小麦种子萌发幼苗生长及生理生化特性的影响[J]. 农业环境科学学报, 2005, 24(增刊1):17−20.
Li Z F, Liu H F, Xiong X X, et al. Effect of cadmium on seed germination, seedling development and physiological and biochemical characteristics of wheat[J]. Journal of Agro-Environment Science, 2005, 24(Suppl.1): 17−20.
|
[23] |
Rom C, Romeo S, Francini A, et al. Leaves position in Populus alba Villafranca clone reveals a strategy towards cadmium uptake response[J]. Plant Growth Regulation, 2016, 79(3): 355−366. doi: 10.1007/s10725-015-0139-6
|
[24] |
顾颉刚. 镉胁迫对杨树无性系植株生长发育及部分生理特性影响的研究[D]. 天津: 天津师范大学, 2008.
Gu J G. The study on Cd effect of growth and some physiological charaeteristics of Populus clones[D]. Tianjin: Tianjin Normal University, 2008.
|
[25] |
Quanacci M F, Baker A J M, Navari-Izzo F. Nitrilotriacetate-and citric acid-assisted phytoextraction of cadmium by Indian mustard[J]. Chemsphere, 2005, 59: 1249−1255.
|
[26] |
黄玉敏, 邓勇, 李德芳, 等. 镉胁迫对大麻幼苗生长及生理生化影响[J]. 中国麻业科学, 2017, 39(5):227−233. doi: 10.3969/j.issn.1671-3532.2017.05.003
Huang Y M, Deng Y, Li D F, et al. Effect of growth and physiology-chemistry of hemp (Cannabis sativa) seedlings under cadmium stress[J]. Plant Fiber Sciences in China, 2017, 39(5): 227−233. doi: 10.3969/j.issn.1671-3532.2017.05.003
|
[27] |
唐星林, 金洪平, 周晨, 等. 镉胁迫对龙葵叶绿素荧光和光合生化特性的影响[J]. 中南林业科技大学学报, 2019, 39(9):102−108.
Tang X L, Jin H P, Zhou C, et al. Effects of cadmium stress on chlorophyll fluorescence and photosynthetic biochemical characteristics in leaves of Solanum nigrum[J]. Journal of Central South University of Forestry & Technology, 2019, 39(9): 102−108.
|
[28] |
尹大川, 邓勋, 宋小双, 等. Cd胁迫下外生菌根菌对樟子松生理指标和根际土壤酶的影响[J]. 生态学杂志, 2017, 36(11):3072−3078.
Yin D C, Deng X, Song X S, et al. Effects of ectomycorrhizal fungi on physiological indexes of Pinus sylvestris var. mongolica seedlings and soil enzyme activities under cadmium stress[J]. Chin J Ecol, 2017, 36(11): 3072−3078.
|
[29] |
周青, 黄晓华, 施国新, 等. 镉对5种常绿树木若干生理生化特性的影响[J]. 环境科学研究, 2001, 14(3):9−11. doi: 10.3321/j.issn:1001-6929.2001.03.004
Zhou Q, Huang X H, Shi G X, et al. Effect of cadmium on the physiological and biochemical character of evergreen trees[J]. Research of Environmental Sciences, 2001, 14(3): 9−11. doi: 10.3321/j.issn:1001-6929.2001.03.004
|
[30] |
杨园, 王艮梅. 杨树对镉胁迫的响应及抗性机制研究进展[J]. 世界林业研究, 2017, 30(4):29−34.
Yang Y, Wang G M. Poplar response to Cd stress and its resistance mechanism[J]. World Forestry Research, 2017, 30(4): 29−34.
|
[31] |
孙永娣, 巢建国, 谷巍, 等. 镉胁迫对茅苍术生理生化特征的影响[J]. 植物生理学报, 2018, 54(12):1857−1864.
Sun Y D, Chao J G, Gu W, et al. Effect of cadmium stress on physiological and biochemical characteristics of Atractylodes lancea[J]. Plant Physiology Journal, 2018, 54(12): 1857−1864.
|
[32] |
陈霞霞, 蒲高忠, 黄玉清, 等. 铊和镉胁迫对芦竹生长及光合特征的影响[J], 广西植物, 2019,39(6):743−751.
Chen X X, Pu G Z, Huang Y Q, et al. Effects of thallium and cadmium stress on growth and photosynthetic characteristics of Arundo donax[J], Guihaia, 2019,39(6):743−751.
|
[33] |
简敏菲, 杨叶萍, 余厚平, 等. 不同浓度 Cd2+ 胁迫对苎麻叶绿素及其光合荧光特性的影响[J]. 植物生理学报, 2015, 51(8):1331−1338.
Jian M F, Yang Y P, Yu H P, et al. Influences of different cadmium concentration stress on chlorophyll and its photosynthetic fluorescence characteristics of ramie (Boehmeria nivea)[J]. Plant Physiology Journal, 2015, 51(8): 1331−1338.
|
[34] |
马晓华, 张旭乐, 钱仁卷, 等. 镉与铜胁迫下无柄小叶榕的生理响应[J]. 森林与环境学报, 2019, 39(2):194−200.
Ma X H, Zhang X L, Qian R J, et al. Physiological response of Ficus concinna var. subsessilis under heavy metal cadmium-copper stress[J]. Journal of Forest and Environment, 2019, 39(2): 194−200.
|
[1] | Zhang Shuning, Bao Wenquan, Ao Dun, Zhao Guanghua, Wang Lin, Wuyun Tana, Bai Yu’e, Han Qimuge. Potential distribution area and niche change of Prunus mira under context of climate change[J]. Journal of Beijing Forestry University, 2024, 46(9): 45-56. DOI: 10.12171/j.1000-1522.20230014 |
[2] | Xu Jingya, Liu Tian, Zang Guozhang, Zheng Yiqi. Prediction of suitable areas of Eremochloa ophiuroides in China under different climate scenarios based on MaxEnt model[J]. Journal of Beijing Forestry University, 2024, 46(3): 91-102. DOI: 10.12171/j.1000-1522.20230022 |
[3] | He Xuegao, Liu Huan, Zhang Jing, Cheng Wei, Ding Peng, Jia Fengming, Li Qing, Liu Chao. Predicting potential suitable distribution areas for Juniperus przewalskii in Qinghai Province of northwestern China based on the optimized MaxEnt model[J]. Journal of Beijing Forestry University, 2023, 45(12): 19-31. DOI: 10.12171/j.1000-1522.20220515 |
[4] | Liu Jiaqi, Wei Guangkuo, Shi Changqing, Zhao Tingning, Qian Yunkai. Suitable distribution area of drought-resistant afforestation tree species in north China based on MaxEnt model[J]. Journal of Beijing Forestry University, 2022, 44(7): 63-77. DOI: 10.12171/j.1000-1522.20210527 |
[5] | Liu Wei, Zhao Runan, Sheng Qianqian, Geng Xingmin, Zhu Zunling. Geographical distribution and potential distribution area prediction of Paeonia jishanensis in China[J]. Journal of Beijing Forestry University, 2021, 43(12): 83-92. DOI: 10.12171/j.1000-1522.20200360 |
[6] | Tang Yan, Zhao Runan, Ren Gang, Cao Fuliang, Zhu Zunling. Prediction of potential distribution of Lycium chinense based on MaxEnt model and analysis of its important influencing factors[J]. Journal of Beijing Forestry University, 2021, 43(6): 23-32. DOI: 10.12171/j.1000-1522.20200103 |
[7] | Huang Ruizhi, Yu Tao, Zhao Hui, Zhang Shengkai, Jing Yang, Li Junqing. Prediction of suitable distribution area of the endangered plant Acer catalpifolium under the background of climate change in China[J]. Journal of Beijing Forestry University, 2021, 43(5): 33-43. DOI: 10.12171/j.1000-1522.20200254 |
[8] | Chen Jie, Long Ting, Yang Lan, Wang Yin, Xu Chao, Li Jingwen. Habitat suitability assessment of Taxus cuspidate[J]. Journal of Beijing Forestry University, 2019, 41(4): 51-59. DOI: 10.13332/j.1000-1522.20180408 |
[9] | Tang Shupei, Mu Liguang, Wang Xiaoling, Zhang Jing, Liu Bo, Menghedalai, Bao Weidong. Habitat suitability assessment based on MaxEnt modeling of Chinese goral in Saihanwula National Nature Reserve, Inner Mongolia of northern China[J]. Journal of Beijing Forestry University, 2019, 41(1): 102-108. DOI: 10.13332/j.1000-1522.20180176 |
[10] | ZHANG Chao, CHEN Lei, TIAN Cheng-ming, LI Tao, WANG Rong, YANG Qi-qing. Predicting the distribution of dwarf mistletoe (Arceuthobium sichuanense) with GARP and MaxEnt models[J]. Journal of Beijing Forestry University, 2016, 38(5): 23-32. DOI: 10.13332/j.1000-1522.20150516 |
1. |
王博,杨雪清,蒋春颖,赖光辉,陈锋,刘晓东. 北京山区森林火灾蔓延风险评估. 生态学报. 2025(02): 813-821 .
![]() | |
2. |
律江,贾玮,刘洋,刘阳. 城市与森林融合的国有林场森林防火地面防控新范式探索——以北京市西山试验林场为例. 森林防火. 2024(03): 42-45 .
![]() |