• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wu Yuxin, Yu Xinxiao, Peng Xiuwen, Zhang Xiao, Wang Yangyang, Qiu Guifu, Li Wenli, Jia Guodong. Hydrological characteristics of litter and soil of five types of plantation configuration patterns in the Chongli Competition District of Winter Olympic Games[J]. Journal of Beijing Forestry University, 2022, 44(4): 66-75. DOI: 10.12171/j.1000-1522.20210295
Citation: Wu Yuxin, Yu Xinxiao, Peng Xiuwen, Zhang Xiao, Wang Yangyang, Qiu Guifu, Li Wenli, Jia Guodong. Hydrological characteristics of litter and soil of five types of plantation configuration patterns in the Chongli Competition District of Winter Olympic Games[J]. Journal of Beijing Forestry University, 2022, 44(4): 66-75. DOI: 10.12171/j.1000-1522.20210295

Hydrological characteristics of litter and soil of five types of plantation configuration patterns in the Chongli Competition District of Winter Olympic Games

More Information
  • Received Date: August 04, 2021
  • Revised Date: September 07, 2021
  • Available Online: April 01, 2022
  • Published Date: April 24, 2022
  •   Objective  By investigating and studying the variation and differences of the hydrological properties of the litter layer and soil layer of the artificial forests in small watersheds surrounding the Winter Olympic venues, this study aimed to provide theoretical support for the restoration and management of plantation forests and enhancement of water conservasion capacity for the study area.
      Method  We conducted field work in the Xigou Watershed of Chongli District by investigating five types of plantation configuration pattern plots (Larix gmelinii pure forest, Pinus sylvestris pure forest, Larix gmelinii and Caragana korshinskii mixed forest, Pinus sylvestris and Caragana korshinskii mixed forest, Pinus sylvestris, Larix gmelinii and Caragana korshinskii mixed forest). Characteristics of the litter layer and soil layer in the plots were measured, and hydrological characteristics of litter and soil in different plots were quantitatively analyzed and compared.
      Result  (1) The accumulation and thickness of litter in the semi-decomposed layer were smaller than in the undecomposed layer of different plantations . (2) The litter water holding capacity of different plantation configuration patterns was as follows: the pure forest of Pinus sylvestris showed the largest (2.94 t/ha) maximum water holding capacity and the pure forest of Larix gmelinii was the smallest (1.95 t/ha); the effective water holding capacity in the mixed forest of Pinus sylvestris and Caragana korshinskii was the largest (1.46 t/ha) and the pure forest of larch was the smallest (1.17 t/ha). (3) The water holding capacity of litter in different plantation configurations showed a logarithmic relationship with the soaking time, and the water absorption rate of litter showed a power function relationship with the soaking time. (4) Soil physical properties and infiltration rates of different plantation configurations showed that the mixed artificial forest was better than the pure forest, and the soil infiltration rates showed a power function relationship with the infiltration time.
      Conclusion  The hydrological performance of the artificial forest mixed configuration pattern is better than that of the pure forest, it is recommended that native tree species and allocation patterns should be fully considered in the initial stage of vegetation reconstruction and restoration for the rapid reconstruction and healthy management of artificial forests, laying the foundation for the next step in the optimization of the spatial structure and alignment of forest vegetation in small watersheds.
  • [1]
    陈波, 杨新兵, 赵心苗, 等. 冀北山地6种天然纯林枯落物及土壤水文效应[J]. 水土保持学报, 2012, 26(2): 196−202.

    Chen B, Yang X B, Zhao X M, et al. Hydrological effects of six natural pure forests litter and soil in northern mountain of Hebei Province[J]. Journal of Soil and Water Conservation, 2012, 26(2): 196−202.
    [2]
    柳晓娜, 贾国栋, 余新晓. 不同密度杨树人工林的林地涵养水源功能研究[J]. 环境科学与技术, 2017, 40(10): 8−13.

    Liu X N, Jia G D, Yu X X. Study on water conservation function of poplar plantation with different densities[J]. Environmental Science & Technology, 2017, 40(10): 8−13.
    [3]
    孙浩, 刘晓勇, 何齐发, 等. 修河上游流域4种森林类型的水源涵养功能评价[J]. 水土保持研究, 2017, 24(4): 337−341, 348.

    Sun H, Liu X Y, He Q F, et al. Assessments of four types of forests on soil water conservation functions in the upper reaches of Xiu River[J]. Research of Soil and Water Conservation, 2017, 24(4): 337−341, 348.
    [4]
    郭宇嘉, 牛庆花, 陆贵巧, 等. 承德市第三乡林场不同林分类型枯落物和土壤的持水特性[J]. 水土保持通报, 2018, 38(3): 38−44.

    Guo Y J, Niu Q H, Lu G Q, et al. Water-holding capacity of litter and soil in different forests in Disanxiang Forest Farm of Chengde City[J]. Bulletin of Soil and Water Conservation, 2018, 38(3): 38−44.
    [5]
    Facceli J M, Pickett S T A. Plant litter: its dynamics and effects on plant community structure[J]. Botanical Review, 1991, 57(1): 1−32.
    [6]
    黄进, 杨会, 张金池. 桐庐生态公益林主要林分类型的土壤水文效应[J]. 生态环境学报, 2009, 18(3): 1094−1099. doi: 10.3969/j.issn.1674-5906.2009.03.054

    Huang J, Yang H, Zhang J C. Soil hydrological function of main forest types in Tonglu’s ecological noncommercial forest[J]. Ecology and Environmental Sciences, 2009, 18(3): 1094−1099. doi: 10.3969/j.issn.1674-5906.2009.03.054
    [7]
    耿琦, 王海燕, 张美娜, 等. 森林枯落物持水特性影响因素研究进展[J]. 生态科学, 2020, 39(5): 220−226.

    Geng Q, Wang H Y, Zhang M N, et al. Review on factors affecting water-holding characteristics of forest litter[J]. Ecological Science, 2020, 39(5): 220−226.
    [8]
    宣立辉, 康凡, 谷建才, 等. 冀北地区典型林分枯落物层与土壤层的水文效应[J]. 水土保持研究, 2018, 25(4): 86−91.

    Xuan L H, Kang F, Gu J C, et al. Hydrological effects of litter and soil layers in typical stands of North Hebei[J]. Research of Soil and Water Conservation, 2018, 25(4): 86−91.
    [9]
    侯贵荣, 毕华兴, 魏曦, 等. 黄土残塬沟壑区刺槐林枯落物水源涵养功能综合评价[J]. 水土保持学报, 2019, 33(2): 251−257.

    Hou G R, Bi H X, Wei X, et al. Comprehensive evaluation of water conservation function of litters of robinia pseudoacacia forest lands in gully region on Loess Plateau[J]. Journal of Soil and Water Conservation, 2019, 33(2): 251−257.
    [10]
    胡晓聪, 黄乾亮, 金亮. 西双版纳热带山地雨林枯落物及其土壤水文功能[J]. 应用生态学报, 2017, 28(1): 55−63.

    Hu X C, Huang Q L, Jin L. Hydrological functions of the litters and soil of tropical montane rain forest in Xishuangbanna, Yunnan, China[J]. Chinese Journal of Applied Ecology, 2017, 28(1): 55−63.
    [11]
    王颖, 杨新兵. 冀北山地6种林分类型土壤水分−物理性质变化[J]. 水土保持研究, 2017, 24(3): 108−112.

    Wang Y, Yang X B. Soil water-physical properties of six forest types in northern mountains of Hebei Province[J]. Research of Soil and Water Conservation, 2017, 24(3): 108−112.
    [12]
    公博, 师忱, 何会宾, 等. 冀北山区6种人工林的林地水源涵养能力[J]. 干旱区资源与环境, 2019, 33(3): 165−170.

    Gong B, Shi C, He H B, et al. The water conservation capacity of 6 kinds of planted forests in northern mountains of Hebei Province[J]. Journal of Arid Land Resources and Environment, 2019, 33(3): 165−170.
    [13]
    温亚飞, 杨新兵, 胡静霞, 等. 2022年冬奥会崇礼赛区主要林分类型空间结构特征分析[J]. 内蒙古农业大学学报, 2017, 38(1): 29−35.

    Wen Y F, Yang X B, Hu J X, et al. Analysis of forest spatial structure for main forest types in the 2022 Winter Olympics of Chongli[J]. Journal of Inner Mongolia Agricultural University, 2017, 38(1): 29−35.
    [14]
    邢晓光, 沈会涛, 马文才, 等. 冀西北山地华北落叶松和白桦林下枯落物水文特征[J]. 水土保持通报, 2016, 36(5): 126−130.

    Xing X G, Shen H T, Ma W C, et al. Hydrological effects of Larix principis-rupprechtii and Betula platyphylla forest litters in northwest mountain of Hebei Province[J]. Bulletin of Soil and Water Conservation, 2016, 36(5): 126−130.
    [15]
    孙立博, 余新晓, 陈丽华, 等. 坝上高原杨树人工林的枯落物及土壤水源涵养功能退化[J]. 水土保持学报, 2019, 33(1): 104−110.

    Sun L B, Yu X X, Chen L H, et al. Degradation of litter and soil water conservation function of poplar plantation in Bashang Plateau[J]. Journal of Soil and Water Conservation, 2019, 33(1): 104−110.
    [16]
    杨建伟, 杨建英, 何会宾, 等. 冀北山区滦平县4种新造林地水源涵养能力研究[J]. 生态学报, 2019, 39(18): 6731−6737.

    Yang J W, Yang J Y, He H B, et al. Study of water conservation capacity of four new woodlands in the northern Hebei mountain area of Luanping County[J]. Acta Ecologica Sinica, 2019, 39(18): 6731−6737.
    [17]
    胡静霞, 杨新兵, 朱辰光, 等. 冀西北地区4种纯林枯落物及土壤水文效应[J]. 水土保持研究, 2017, 24(4): 304−310.

    Hu J X, Yang X B, Zhu C G, et al. Hydrological effects of litter in four pure forests and soils in northwest of Hebei Province[J]. Research of Soil and Water Conservation, 2017, 24(4): 304−310.
    [18]
    张缓, 穆兴民, 高鹏. 黄土高原不同立地条件下枯落物蓄积量及持水特征[J]. 水土保持研究, 2021, 28(3): 45−52.

    Zhang H, Mu X M, Gao P. Variation of litter accumulation and water-holding capacity at different site conditions in the Loess Plateau[J]. Research of Soil and Water Conservation, 2021, 28(3): 45−52.
    [19]
    刘宇, 郭建斌, 王彦辉, 等. 宁夏六盘山不同密度华北落叶松人工林枯落物水文效应[J]. 北京林业大学学报, 2016, 38(8): 36−44.

    Liu Y, Guo J B, Wang Y H, et al. Hydrological effects of forest litter of Larix principis-rupprechtii plantations with varying densities in Liupan Mountains of Ningxia, China[J]. Journal of Beijing Forestry University, 2016, 38(8): 36−44.
    [20]
    董伯骞, 黄选瑞, 夏明瑞. 退化华北落叶松林枯落物对近自然经营的短期响应[J]. 中国水土保持科学, 2011, 9(3): 52−58. doi: 10.3969/j.issn.1672-3007.2011.03.010

    Dong B Q, Huang X R, Xia M R. Short-term response of litter of degraded Larix pricipis-rupprechtii forest to close-to natural management[J]. Science of Soil and Water Conservation, 2011, 9(3): 52−58. doi: 10.3969/j.issn.1672-3007.2011.03.010
    [21]
    魏强, 凌雷, 张广忠, 等. 甘肃兴隆山主要森林类型凋落物累积量及持水特性[J]. 应用生态学报, 2011, 22(10): 2589−2598.

    Wei Q, Ling L, Zhang G Z, et al. Water-holding characteristics and accumulation amount of the litters under main forest types in Xinglong Mountain of Gansu, Northwest China[J]. Chinese Journal of Applied Ecology, 2011, 22(10): 2589−2598.
    [22]
    陈倩, 周志立, 史琛媛, 等. 河北太行山丘陵区不同林分类型枯落物与土壤持水效益[J]. 水土保持学报, 2015, 29(5): 206−211.

    Chen Q, Zhou Z L, Shi C Y, et al. Litter and soil water-holding capacity of different typical forests in hilly region of Taihang Mountain in Hebei Province[J]. Journal of Soil and Water Conservation, 2015, 29(5): 206−211.
    [23]
    邓继峰, 丁国栋, 吴斌, 等. 宁夏盐池地区3种林分枯落物层和土壤水文效应[J]. 北京林业大学学报, 2014, 36(2): 108−114.

    Deng J F, Ding G D, Wu B, et al. Hydrological effects of forest litter and soil of three kinds of forest stands in Yanchi District, Ningxia of northwestern China[J]. Journal of Beijing Forestry University, 2014, 36(2): 108−114.
    [24]
    孙拥康, 汤景明, 王怡. 亚热带日本落叶松人工林枯落物及土壤层水文效应[J]. 北京林业大学学报, 2021, 43(8): 60−69. doi: 10.12171/j.1000-1522.20200259

    Sun Y K, Tang J M, Wang Y. Hydrological effects of litter and soil layers of Larix kaempferi plantation in subtropical regions[J]. Journal of Beijing Forestry University, 2021, 43(8): 60−69. doi: 10.12171/j.1000-1522.20200259
    [25]
    廖军, 薛建辉, 施建敏. 竹阔混交林的水文效应[J]. 南京林业大学学报(自然科学版), 2002, 26(4): 6−10.

    Liao J, Xue J H, Shi J M. Hydrological effects of mixed forest of moso bamboo and broad-leaved trees[J]. Journal of Nanjing Forestry University (Nature Science Edition), 2002, 26(4): 6−10.
    [26]
    刘小林, 李惠萍, 郑子龙, 等. 小陇山林区主要林地类型土壤入渗特征[J]. 甘肃农业大学学报, 2016, 51(6): 89−94.

    Liu X L, Li H P, Zheng Z L, et al. Soil infiltration characteristics of main forest lands in Xiaolongshan region[J]. Journal of Gansu Agricultural University, 2016, 51(6): 89−94.
    [27]
    Jones P D, Edwards S L, Demarais S, et al. Vegetation community responses to different establishment regimes in loblolly pine (Pinus taeda) plantations in southern MS, USA[J]. Forest Ecology and Management, 2009, 257(2): 553−560.
    [28]
    Maestre F T, Cortina J, Vallejo R. Are ecosystem composition, structure, and functional status related to restoration success? A test from semiarid mediterranean steppes[J]. Restoration Ecology, 2006, 2(14): 258−266.
    [29]
    袁秀锦, 肖文发, 潘磊, 等. 马尾松林分结构对枯落物层和土壤层水文效应的影响[J]. 林业科学研究, 2020, 33(4): 26−34.

    Yuan X J, Xiao W F, Pan L, et al. Effect of Pinus massoniana stand structure on hydrological effects of litter layer and soil layer[J]. Forest Research, 2020, 33(4): 26−34.
    [30]
    孙菲菲, 张增祥, 左丽君, 等. 冀西北水源涵养区不同类型人工针叶林生态功能差异性评估[J]. 自然资源学报, 2020, 35(6): 1348−1359. doi: 10.31497/zrzyxb.20200608

    Sun F F, Zhang Z X, Zuo L J, et al. Difference assessment on ecological functions of artificial coniferous forests in water conservation area of northwestern Hebei[J]. Journal of Natural Resources, 2020, 35(6): 1348−1359. doi: 10.31497/zrzyxb.20200608
    [31]
    Ehbrecht M, Seidel D, Annighfer P, et al. Global patterns and climatic controls of forest structural complexity[J]. Nature Communications, 2021, 12(1): 1−12. doi: 10.1038/s41467-020-20314-w
    [32]
    刘凤芹. 冀北山区典型林分类型结构特征研究[D]. 北京: 北京林业大学, 2011.

    Liu F Q. Study on forest structure characteristics of typical stands types in North Mountain of Hebei Province[D]. Beijing: Beijing Forestry University, 2011.
    [33]
    惠刚盈, 胡艳波, 徐海. 结构化森林经营[M]. 北京: 中国林业出版社, 2007.

    Hui G Y, Hu Y B, Xu H. Structured forest management[M]. Beijing: China Forestry Publishing House, 2007.
    [34]
    万盼, 刘文桢, 刘瑞红, 等. 结构化经营对栎松混交林林分空间结构及稳定性的影响[J]. 林业科学, 2020, 56(4): 35−45. doi: 10.11707/j.1001-7488.20200404

    Wan P, Liu W Z, Liu R H, et al. Effects of structure-based forest management on stand space structure and its stability of mixed oak-pine forest[J]. Scientia Silvae Sinicae, 2020, 56(4): 35−45. doi: 10.11707/j.1001-7488.20200404
  • Related Articles

    [1]Wu Yan, Li Xinyu, Zhang Yiting, Ding Bo, Zhang Yunlin, Fu Yuhong, Liu Xun. Litter carbon, nitrogen, and phosphorus stoichiometric characteristics and their influencing factors of Pinus massoniana plantation with different age groups in karst region of southwestern China[J]. Journal of Beijing Forestry University, 2024, 46(2): 87-94. DOI: 10.12171/j.1000-1522.20220052
    [2]Xiang Yunxi, Pan Ping, Chen Shengkui, Ouyang Xunzhi, Ning Jinkui, Wu Zirong, Ji Renzhan. Characteristics of soil C, N, P and their relationship with litter quality in natural Pinus massoniana forest[J]. Journal of Beijing Forestry University, 2019, 41(11): 95-103. DOI: 10.13332/j.1000-1522.20190029
    [3]Ren Yue, Gao Guanglei, Ding Guodong, Zhang Ying, Park Kihyung, Guo Mishan, Cao Hongyu. Characteristics of organic carbon content of leaf-litter-soil system in Pinus sylvestris var. mongolica plantations[J]. Journal of Beijing Forestry University, 2018, 40(7): 36-44. DOI: 10.13332/j.1000-1522.20180138
    [4]Wang An-ning, Lin Xin, Mu Feng, Li Yu-ling, Li Xiao-hong. Water holding capacity of litter at different slope positions of sand slope in Salix gordejevii sand barrier of Mulan Paddock of northern Hebei Province, northern China[J]. Journal of Beijing Forestry University, 2018, 40(1): 98-107. DOI: 10.13332/j.1000-1522.20170233
    [5]Liu Kai, He Kang-ning, Wang Xian-bang. Hydrological effects of litter of Betula platyphylla forest with different densities in alpine region, Qinghai of northwestern China[J]. Journal of Beijing Forestry University, 2018, 40(1): 89-97. DOI: 10.13332/j.1000-1522.20170225
    [6]LIU Yu, GUO Jian-bin, WANG Yan-hui, LIU Ze-bin, DENG Xiu-xiu, ZHANG Tong, XIONG Wei, ZUO Hai-jun. Hydrological effects of forest litter of Larix principis-rupprechtii plantations with varying densities in Liupan Mountains of Ningxia, China.[J]. Journal of Beijing Forestry University, 2016, 38(8): 36-44. DOI: 10.13332/j.1000-1522.20160007
    [7]DENG Ji-feng, DING Guo-dong, WU Bin, ZHANG Yu-qing, ZHAO Yuan-yuan, GAO Guang-#br# lei, WANG Xin-xing. Hydrological effects of forest litter and soil of three kinds of forest stands in Yanchi District,Ningxia of northwestern China.[J]. Journal of Beijing Forestry University, 2014, 36(2): 108-114.
    [8]WANG Yang, LIU Jing-shuang, DOU Jing-xin, ZHAO Guang-ying.. Seasonal variations and nutrient accumulation of Deyeuxia angustifolia litter in Sanjiang Plain wetlands, northeastern China[J]. Journal of Beijing Forestry University, 2010, 32(1): 74-81.
    [9]FAN Deng-xing, YU Xin-xiao, YUE Yong-jie, ZHU Jian-gang, WANG Xiong-bin, LIU Yan, LI Jin-hai, WU Jun. Water holding characteristics of litter layer of different forest stands in Xishan Mountain in Beijing.[J]. Journal of Beijing Forestry University, 2008, 30(supp.2): 177-181.
    [10]RAO Liang-yi, ZHU Jin-zhao, BI Hua-xing. Hydrological effects of forest litters and soil in the Simian Mountain of Chongqing City.[J]. Journal of Beijing Forestry University, 2005, 27(1): 33-37.
  • Cited by

    Periodical cited type(22)

    1. 陈子川,潘国营,陈灿,徐云鹏,林晗,陈煜,谢安强,范海兰. 光强对木麻黄幼苗根系形态、解剖结构及其碳氮含量的影响. 生态学报. 2024(10): 4377-4387 .
    2. 陈静航,叶蕊蕊,孙建喜,罗利华,李灿,吴勇,胡田田. 滴灌施肥周期和毛管布设方式对苹果树细根直径时空分布的影响. 干旱地区农业研究. 2023(01): 101-110 .
    3. 吴小健,李秉钧,颜耀,李明,吴鹏飞,马祥庆. 不同种源杉木细根解剖性状的差异分析. 森林与环境学报. 2023(03): 232-239 .
    4. 吴义远,董文渊,浦婵,钟欢,夏莉,袁翎凌,陈新. 土壤水分和养分对筇竹竹鞭解剖特征及其适应可塑性的影响. 竹子学报. 2023(01): 1-10 .
    5. 张家豪,王根绪,王文志,孙守琴. 大气氮沉降增加对树木生长和水碳利用的影响. 西部林业科学. 2023(03): 145-151+159 .
    6. 韩梦豪,李俊杰,王磊,刘晴廙,关庆伟. 间伐对马尾松不同根序细根化学组分的影响. 森林与环境学报. 2023(04): 337-345 .
    7. 张玉慧,谢芳,闫国永. 不同乔木树种根系养分吸收策略的维度性差异. 林业科技. 2023(04): 16-22 .
    8. 刘逸潇,王传宽,上官虹玉,臧妙涵,梁逸娴,全先奎. 兴安落叶松不同径级根碳氮磷钾化学计量特征的种源差异. 应用生态学报. 2023(07): 1797-1805 .
    9. 周诚,刘彤,王庆贵,韩士杰. 长期氮添加对阔叶红松林细根形态、解剖结构和化学组分的影响. 北京林业大学学报. 2022(11): 31-40 . 本站查看
    10. 郝龙飞,郝文颖,刘婷岩,张敏,许吉康,斯钦毕力格. 氮添加及接种处理对1年生樟子松苗木根系形态及养分含量的影响. 北京林业大学学报. 2021(04): 1-7 . 本站查看
    11. 焦海珍,邵陈禹,陈建姣,张晨禹,陈佳豪,李云飞,沈程文. 重度遮阴及复光条件下茶树根系的生理响应及抗氧化酶活性动态变化. 茶叶科学. 2021(05): 695-704 .
    12. 洪梓明,邢亚娟,闫国永,张军辉,王庆贵. 长白山白桦山杨次生林细根形态特征和解剖结构对氮沉降的响应. 生态学报. 2020(02): 608-620 .
    13. 吴义远,董文渊,刘培,张孟楠,谢泽轩,田发坤. 不同土壤水分和养分条件下筇竹竹秆解剖特征及其适应可塑性. 北京林业大学学报. 2020(04): 80-90 . 本站查看
    14. 李秉钧,颜耀,王小虎,孙雪莲,马祥庆. 环境因子对林木细根功能性状的影响研究进展. 福建林业科技. 2020(02): 125-132 .
    15. 张俪予,张军辉,张蕾,陈伟,韩士杰. 兴安落叶松和白桦细根形态对环境变化的响应. 北京林业大学学报. 2019(06): 15-23 . 本站查看
    16. 陈旭,刘洪凯,赵春周,王强,王延平. 山东滨海盐碱地11个造林树种叶解剖特征对土壤条件的响应. 植物生态学报. 2019(08): 697-708 .
    17. 杨阳,熊远兵,郝晓泳. 干旱胁迫对耧斗菜根解剖结构及生理特性的影响. 北方园艺. 2018(17): 82-89 .
    18. 王建宇,胡海清,邢亚娟,闫国永,王庆贵. 大兴安岭兴安落叶松林树木生物量对氮沉降的响应. 林业科学研究. 2018(03): 88-94 .
    19. 杨阳,熊远兵,郝晓泳. 干旱胁迫对耧斗菜根解剖结构及生理特性的影响. 内蒙古农业大学学报(自然科学版). 2018(03): 1-7 .
    20. 钟悦鸣,董芳宇,王文娟,王健铭,李景文,吴波,贾晓红. 不同生境胡杨叶片解剖特征及其适应可塑性. 北京林业大学学报. 2017(10): 53-61 . 本站查看
    21. 毛晋花,邢亚娟,马宏宇,王庆贵. 氮沉降对植物生长的影响研究进展. 中国农学通报. 2017(29): 42-48 .
    22. 张鑫,邢亚娟,贾翔,王庆贵. 北方森林细根对氮沉降和二氧化碳浓度升高的响应. 中国农学通报. 2017(30): 84-90 .

    Other cited types(33)

Catalog

    Article views (951) PDF downloads (59) Cited by(55)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return