• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wu Yuxin, Yu Xinxiao, Peng Xiuwen, Zhang Xiao, Wang Yangyang, Qiu Guifu, Li Wenli, Jia Guodong. Hydrological characteristics of litter and soil of five types of plantation configuration patterns in the Chongli Competition District of Winter Olympic Games[J]. Journal of Beijing Forestry University, 2022, 44(4): 66-75. DOI: 10.12171/j.1000-1522.20210295
Citation: Wu Yuxin, Yu Xinxiao, Peng Xiuwen, Zhang Xiao, Wang Yangyang, Qiu Guifu, Li Wenli, Jia Guodong. Hydrological characteristics of litter and soil of five types of plantation configuration patterns in the Chongli Competition District of Winter Olympic Games[J]. Journal of Beijing Forestry University, 2022, 44(4): 66-75. DOI: 10.12171/j.1000-1522.20210295

Hydrological characteristics of litter and soil of five types of plantation configuration patterns in the Chongli Competition District of Winter Olympic Games

More Information
  • Received Date: August 04, 2021
  • Revised Date: September 07, 2021
  • Available Online: April 01, 2022
  • Published Date: April 24, 2022
  •   Objective  By investigating and studying the variation and differences of the hydrological properties of the litter layer and soil layer of the artificial forests in small watersheds surrounding the Winter Olympic venues, this study aimed to provide theoretical support for the restoration and management of plantation forests and enhancement of water conservasion capacity for the study area.
      Method  We conducted field work in the Xigou Watershed of Chongli District by investigating five types of plantation configuration pattern plots (Larix gmelinii pure forest, Pinus sylvestris pure forest, Larix gmelinii and Caragana korshinskii mixed forest, Pinus sylvestris and Caragana korshinskii mixed forest, Pinus sylvestris, Larix gmelinii and Caragana korshinskii mixed forest). Characteristics of the litter layer and soil layer in the plots were measured, and hydrological characteristics of litter and soil in different plots were quantitatively analyzed and compared.
      Result  (1) The accumulation and thickness of litter in the semi-decomposed layer were smaller than in the undecomposed layer of different plantations . (2) The litter water holding capacity of different plantation configuration patterns was as follows: the pure forest of Pinus sylvestris showed the largest (2.94 t/ha) maximum water holding capacity and the pure forest of Larix gmelinii was the smallest (1.95 t/ha); the effective water holding capacity in the mixed forest of Pinus sylvestris and Caragana korshinskii was the largest (1.46 t/ha) and the pure forest of larch was the smallest (1.17 t/ha). (3) The water holding capacity of litter in different plantation configurations showed a logarithmic relationship with the soaking time, and the water absorption rate of litter showed a power function relationship with the soaking time. (4) Soil physical properties and infiltration rates of different plantation configurations showed that the mixed artificial forest was better than the pure forest, and the soil infiltration rates showed a power function relationship with the infiltration time.
      Conclusion  The hydrological performance of the artificial forest mixed configuration pattern is better than that of the pure forest, it is recommended that native tree species and allocation patterns should be fully considered in the initial stage of vegetation reconstruction and restoration for the rapid reconstruction and healthy management of artificial forests, laying the foundation for the next step in the optimization of the spatial structure and alignment of forest vegetation in small watersheds.
  • [1]
    陈波, 杨新兵, 赵心苗, 等. 冀北山地6种天然纯林枯落物及土壤水文效应[J]. 水土保持学报, 2012, 26(2): 196−202.

    Chen B, Yang X B, Zhao X M, et al. Hydrological effects of six natural pure forests litter and soil in northern mountain of Hebei Province[J]. Journal of Soil and Water Conservation, 2012, 26(2): 196−202.
    [2]
    柳晓娜, 贾国栋, 余新晓. 不同密度杨树人工林的林地涵养水源功能研究[J]. 环境科学与技术, 2017, 40(10): 8−13.

    Liu X N, Jia G D, Yu X X. Study on water conservation function of poplar plantation with different densities[J]. Environmental Science & Technology, 2017, 40(10): 8−13.
    [3]
    孙浩, 刘晓勇, 何齐发, 等. 修河上游流域4种森林类型的水源涵养功能评价[J]. 水土保持研究, 2017, 24(4): 337−341, 348.

    Sun H, Liu X Y, He Q F, et al. Assessments of four types of forests on soil water conservation functions in the upper reaches of Xiu River[J]. Research of Soil and Water Conservation, 2017, 24(4): 337−341, 348.
    [4]
    郭宇嘉, 牛庆花, 陆贵巧, 等. 承德市第三乡林场不同林分类型枯落物和土壤的持水特性[J]. 水土保持通报, 2018, 38(3): 38−44.

    Guo Y J, Niu Q H, Lu G Q, et al. Water-holding capacity of litter and soil in different forests in Disanxiang Forest Farm of Chengde City[J]. Bulletin of Soil and Water Conservation, 2018, 38(3): 38−44.
    [5]
    Facceli J M, Pickett S T A. Plant litter: its dynamics and effects on plant community structure[J]. Botanical Review, 1991, 57(1): 1−32.
    [6]
    黄进, 杨会, 张金池. 桐庐生态公益林主要林分类型的土壤水文效应[J]. 生态环境学报, 2009, 18(3): 1094−1099. doi: 10.3969/j.issn.1674-5906.2009.03.054

    Huang J, Yang H, Zhang J C. Soil hydrological function of main forest types in Tonglu’s ecological noncommercial forest[J]. Ecology and Environmental Sciences, 2009, 18(3): 1094−1099. doi: 10.3969/j.issn.1674-5906.2009.03.054
    [7]
    耿琦, 王海燕, 张美娜, 等. 森林枯落物持水特性影响因素研究进展[J]. 生态科学, 2020, 39(5): 220−226.

    Geng Q, Wang H Y, Zhang M N, et al. Review on factors affecting water-holding characteristics of forest litter[J]. Ecological Science, 2020, 39(5): 220−226.
    [8]
    宣立辉, 康凡, 谷建才, 等. 冀北地区典型林分枯落物层与土壤层的水文效应[J]. 水土保持研究, 2018, 25(4): 86−91.

    Xuan L H, Kang F, Gu J C, et al. Hydrological effects of litter and soil layers in typical stands of North Hebei[J]. Research of Soil and Water Conservation, 2018, 25(4): 86−91.
    [9]
    侯贵荣, 毕华兴, 魏曦, 等. 黄土残塬沟壑区刺槐林枯落物水源涵养功能综合评价[J]. 水土保持学报, 2019, 33(2): 251−257.

    Hou G R, Bi H X, Wei X, et al. Comprehensive evaluation of water conservation function of litters of robinia pseudoacacia forest lands in gully region on Loess Plateau[J]. Journal of Soil and Water Conservation, 2019, 33(2): 251−257.
    [10]
    胡晓聪, 黄乾亮, 金亮. 西双版纳热带山地雨林枯落物及其土壤水文功能[J]. 应用生态学报, 2017, 28(1): 55−63.

    Hu X C, Huang Q L, Jin L. Hydrological functions of the litters and soil of tropical montane rain forest in Xishuangbanna, Yunnan, China[J]. Chinese Journal of Applied Ecology, 2017, 28(1): 55−63.
    [11]
    王颖, 杨新兵. 冀北山地6种林分类型土壤水分−物理性质变化[J]. 水土保持研究, 2017, 24(3): 108−112.

    Wang Y, Yang X B. Soil water-physical properties of six forest types in northern mountains of Hebei Province[J]. Research of Soil and Water Conservation, 2017, 24(3): 108−112.
    [12]
    公博, 师忱, 何会宾, 等. 冀北山区6种人工林的林地水源涵养能力[J]. 干旱区资源与环境, 2019, 33(3): 165−170.

    Gong B, Shi C, He H B, et al. The water conservation capacity of 6 kinds of planted forests in northern mountains of Hebei Province[J]. Journal of Arid Land Resources and Environment, 2019, 33(3): 165−170.
    [13]
    温亚飞, 杨新兵, 胡静霞, 等. 2022年冬奥会崇礼赛区主要林分类型空间结构特征分析[J]. 内蒙古农业大学学报, 2017, 38(1): 29−35.

    Wen Y F, Yang X B, Hu J X, et al. Analysis of forest spatial structure for main forest types in the 2022 Winter Olympics of Chongli[J]. Journal of Inner Mongolia Agricultural University, 2017, 38(1): 29−35.
    [14]
    邢晓光, 沈会涛, 马文才, 等. 冀西北山地华北落叶松和白桦林下枯落物水文特征[J]. 水土保持通报, 2016, 36(5): 126−130.

    Xing X G, Shen H T, Ma W C, et al. Hydrological effects of Larix principis-rupprechtii and Betula platyphylla forest litters in northwest mountain of Hebei Province[J]. Bulletin of Soil and Water Conservation, 2016, 36(5): 126−130.
    [15]
    孙立博, 余新晓, 陈丽华, 等. 坝上高原杨树人工林的枯落物及土壤水源涵养功能退化[J]. 水土保持学报, 2019, 33(1): 104−110.

    Sun L B, Yu X X, Chen L H, et al. Degradation of litter and soil water conservation function of poplar plantation in Bashang Plateau[J]. Journal of Soil and Water Conservation, 2019, 33(1): 104−110.
    [16]
    杨建伟, 杨建英, 何会宾, 等. 冀北山区滦平县4种新造林地水源涵养能力研究[J]. 生态学报, 2019, 39(18): 6731−6737.

    Yang J W, Yang J Y, He H B, et al. Study of water conservation capacity of four new woodlands in the northern Hebei mountain area of Luanping County[J]. Acta Ecologica Sinica, 2019, 39(18): 6731−6737.
    [17]
    胡静霞, 杨新兵, 朱辰光, 等. 冀西北地区4种纯林枯落物及土壤水文效应[J]. 水土保持研究, 2017, 24(4): 304−310.

    Hu J X, Yang X B, Zhu C G, et al. Hydrological effects of litter in four pure forests and soils in northwest of Hebei Province[J]. Research of Soil and Water Conservation, 2017, 24(4): 304−310.
    [18]
    张缓, 穆兴民, 高鹏. 黄土高原不同立地条件下枯落物蓄积量及持水特征[J]. 水土保持研究, 2021, 28(3): 45−52.

    Zhang H, Mu X M, Gao P. Variation of litter accumulation and water-holding capacity at different site conditions in the Loess Plateau[J]. Research of Soil and Water Conservation, 2021, 28(3): 45−52.
    [19]
    刘宇, 郭建斌, 王彦辉, 等. 宁夏六盘山不同密度华北落叶松人工林枯落物水文效应[J]. 北京林业大学学报, 2016, 38(8): 36−44.

    Liu Y, Guo J B, Wang Y H, et al. Hydrological effects of forest litter of Larix principis-rupprechtii plantations with varying densities in Liupan Mountains of Ningxia, China[J]. Journal of Beijing Forestry University, 2016, 38(8): 36−44.
    [20]
    董伯骞, 黄选瑞, 夏明瑞. 退化华北落叶松林枯落物对近自然经营的短期响应[J]. 中国水土保持科学, 2011, 9(3): 52−58. doi: 10.3969/j.issn.1672-3007.2011.03.010

    Dong B Q, Huang X R, Xia M R. Short-term response of litter of degraded Larix pricipis-rupprechtii forest to close-to natural management[J]. Science of Soil and Water Conservation, 2011, 9(3): 52−58. doi: 10.3969/j.issn.1672-3007.2011.03.010
    [21]
    魏强, 凌雷, 张广忠, 等. 甘肃兴隆山主要森林类型凋落物累积量及持水特性[J]. 应用生态学报, 2011, 22(10): 2589−2598.

    Wei Q, Ling L, Zhang G Z, et al. Water-holding characteristics and accumulation amount of the litters under main forest types in Xinglong Mountain of Gansu, Northwest China[J]. Chinese Journal of Applied Ecology, 2011, 22(10): 2589−2598.
    [22]
    陈倩, 周志立, 史琛媛, 等. 河北太行山丘陵区不同林分类型枯落物与土壤持水效益[J]. 水土保持学报, 2015, 29(5): 206−211.

    Chen Q, Zhou Z L, Shi C Y, et al. Litter and soil water-holding capacity of different typical forests in hilly region of Taihang Mountain in Hebei Province[J]. Journal of Soil and Water Conservation, 2015, 29(5): 206−211.
    [23]
    邓继峰, 丁国栋, 吴斌, 等. 宁夏盐池地区3种林分枯落物层和土壤水文效应[J]. 北京林业大学学报, 2014, 36(2): 108−114.

    Deng J F, Ding G D, Wu B, et al. Hydrological effects of forest litter and soil of three kinds of forest stands in Yanchi District, Ningxia of northwestern China[J]. Journal of Beijing Forestry University, 2014, 36(2): 108−114.
    [24]
    孙拥康, 汤景明, 王怡. 亚热带日本落叶松人工林枯落物及土壤层水文效应[J]. 北京林业大学学报, 2021, 43(8): 60−69. doi: 10.12171/j.1000-1522.20200259

    Sun Y K, Tang J M, Wang Y. Hydrological effects of litter and soil layers of Larix kaempferi plantation in subtropical regions[J]. Journal of Beijing Forestry University, 2021, 43(8): 60−69. doi: 10.12171/j.1000-1522.20200259
    [25]
    廖军, 薛建辉, 施建敏. 竹阔混交林的水文效应[J]. 南京林业大学学报(自然科学版), 2002, 26(4): 6−10.

    Liao J, Xue J H, Shi J M. Hydrological effects of mixed forest of moso bamboo and broad-leaved trees[J]. Journal of Nanjing Forestry University (Nature Science Edition), 2002, 26(4): 6−10.
    [26]
    刘小林, 李惠萍, 郑子龙, 等. 小陇山林区主要林地类型土壤入渗特征[J]. 甘肃农业大学学报, 2016, 51(6): 89−94.

    Liu X L, Li H P, Zheng Z L, et al. Soil infiltration characteristics of main forest lands in Xiaolongshan region[J]. Journal of Gansu Agricultural University, 2016, 51(6): 89−94.
    [27]
    Jones P D, Edwards S L, Demarais S, et al. Vegetation community responses to different establishment regimes in loblolly pine (Pinus taeda) plantations in southern MS, USA[J]. Forest Ecology and Management, 2009, 257(2): 553−560.
    [28]
    Maestre F T, Cortina J, Vallejo R. Are ecosystem composition, structure, and functional status related to restoration success? A test from semiarid mediterranean steppes[J]. Restoration Ecology, 2006, 2(14): 258−266.
    [29]
    袁秀锦, 肖文发, 潘磊, 等. 马尾松林分结构对枯落物层和土壤层水文效应的影响[J]. 林业科学研究, 2020, 33(4): 26−34.

    Yuan X J, Xiao W F, Pan L, et al. Effect of Pinus massoniana stand structure on hydrological effects of litter layer and soil layer[J]. Forest Research, 2020, 33(4): 26−34.
    [30]
    孙菲菲, 张增祥, 左丽君, 等. 冀西北水源涵养区不同类型人工针叶林生态功能差异性评估[J]. 自然资源学报, 2020, 35(6): 1348−1359. doi: 10.31497/zrzyxb.20200608

    Sun F F, Zhang Z X, Zuo L J, et al. Difference assessment on ecological functions of artificial coniferous forests in water conservation area of northwestern Hebei[J]. Journal of Natural Resources, 2020, 35(6): 1348−1359. doi: 10.31497/zrzyxb.20200608
    [31]
    Ehbrecht M, Seidel D, Annighfer P, et al. Global patterns and climatic controls of forest structural complexity[J]. Nature Communications, 2021, 12(1): 1−12. doi: 10.1038/s41467-020-20314-w
    [32]
    刘凤芹. 冀北山区典型林分类型结构特征研究[D]. 北京: 北京林业大学, 2011.

    Liu F Q. Study on forest structure characteristics of typical stands types in North Mountain of Hebei Province[D]. Beijing: Beijing Forestry University, 2011.
    [33]
    惠刚盈, 胡艳波, 徐海. 结构化森林经营[M]. 北京: 中国林业出版社, 2007.

    Hui G Y, Hu Y B, Xu H. Structured forest management[M]. Beijing: China Forestry Publishing House, 2007.
    [34]
    万盼, 刘文桢, 刘瑞红, 等. 结构化经营对栎松混交林林分空间结构及稳定性的影响[J]. 林业科学, 2020, 56(4): 35−45. doi: 10.11707/j.1001-7488.20200404

    Wan P, Liu W Z, Liu R H, et al. Effects of structure-based forest management on stand space structure and its stability of mixed oak-pine forest[J]. Scientia Silvae Sinicae, 2020, 56(4): 35−45. doi: 10.11707/j.1001-7488.20200404
  • Related Articles

    [1]Yang Zhou, Zhang Jianjun, Zhao Jiongchang, Hu Yawei, Li Yang, Wang Bo. Response of soil carbon, nitrogen and phosphorus stoichiometric characteristics of Pinus tabuliformis forests to stand age and density in the Loess Plateau region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2024, 46(12): 30-40. DOI: 10.12171/j.1000-1522.20240188
    [2]Jiang Jun, Chen Changqi, Chen Beibei, Wang Hao, Hu Dongyang, Zhang Yong, Zhang Yongfu, Li Jie, Zheng Junpeng. Effects of stand density on carbon, nitrogen, and phosphorus stoichiometry and nutrient resorption of Platycladus orientalis plantations in rocky mountainous area of Beijing[J]. Journal of Beijing Forestry University, 2024, 46(10): 33-41. DOI: 10.12171/j.1000-1522.20240011
    [3]Zhang Minghui, Yin Yunzhou, Wang Ke, Wang Shuli. Effects of spatial structure characteristics of Fraxinus mandshurica plantation on soil nutrient content[J]. Journal of Beijing Forestry University, 2023, 45(9): 73-82. DOI: 10.12171/j.1000-1522.20220476
    [4]Chen Beibei, Yang Hao, Jiang Jun. Leaf N and P resorption and stoichiometry characteristics of main tree species in the plain afforestation area of Beijing[J]. Journal of Beijing Forestry University, 2022, 44(7): 8-15. DOI: 10.12171/j.1000-1522.20210055
    [5]Wang Shanshan, Bi Huaxing, Cui Yanhong, Yun Huiya, Ma Xiaozhi, Zhao Danyang, Hou Guirong. Key indexes and characteristics of soil anti-erodibility of Robinia pseudoacacia with different densities in loess region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2022, 44(5): 94-104. DOI: 10.12171/j.1000-1522.20200226
    [6]Liu Ruosha, Wang Dongmei. Soil nutrients and ecostoichiometric characteristics of different plantations in the alpine region of the Loess Plateau[J]. Journal of Beijing Forestry University, 2021, 43(1): 88-95. DOI: 10.12171/j.1000-1522.20200149
    [7]Wang Yahui, Peng Zuodeng, Li Yun. Soil nutrient and structure characteristics of Robinia pseudoacacia in different generations in the shallow mountain areas of western Henan Province, central China[J]. Journal of Beijing Forestry University, 2020, 42(3): 54-64. DOI: 10.12171/j.1000-1522.20190263
    [8]He Jingwen, Liu Ying, Yu Hang, Wu Jianzhao, Cui Yu, Lin Yongming, Wang Daojie, Li Jian. Nutrient reabsorption efficiency of dominant shrubs in dry-hot valley and its C∶N∶P stoichiometry[J]. Journal of Beijing Forestry University, 2020, 42(1): 18-26. DOI: 10.12171/j.1000-1522.20190185
    [9]Wu Jianzhao, Cui Yu, He Jingwen, Liu Ying, Li Jian, Lin Yongming, Wang Daojie, Wu Chengzhen. Characteristics of plants, soil nutrients and leaf stoichiometry at the early stage of ecological restoration in earthquake-affected area[J]. Journal of Beijing Forestry University, 2019, 41(2): 41-52. DOI: 10.13332/j.1000-1522.20180329
    [10]REN Xiao-xu, CAI Ti-jiu, WANG Xiao-feng. Effects of vegetation restoration models on soil nutrients in an abandoned quarry[J]. Journal of Beijing Forestry University, 2010, 32(4): 151-154.
  • Cited by

    Periodical cited type(21)

    1. 彭小静,黄海山,严芝银,邹星晨,贺康宁,程唱,王作枭,李睿,刘婧雯,石正阳,刘仟仟. 祁连山东部地区不同林分密度白桦天然林土壤理化性质特征. 生态学报. 2025(02): 743-756 .
    2. 张佳凝,张建军,赖宗锐,赵炯昌,胡亚伟,李阳,卫朝阳. 林分密度对刺槐人工林土壤养分和微生物群落的影响. 干旱区研究. 2025(02): 274-288 .
    3. 武燕,李歆玉,张奕婷,丁波,张运林,符裕红,刘讯. 西南喀斯特地区不同龄组马尾松人工林枯落物碳氮磷化学计量特征及其影响因子. 北京林业大学学报. 2024(02): 87-94 . 本站查看
    4. 巩大鹏,毕华兴,王劲峰,赵丹阳,黄靖涵,宋艺琳. 晋西黄土区不同密度刺槐人工林叶片-枯落物-土壤化学计量特征. 林业科学研究. 2024(02): 156-164 .
    5. 陈宇,庞涛,瞿相,彭建,杨汉波,代林利,辜云杰. 造林密度对楠木幼龄林生长、土壤理化性质与酶活性的影响. 四川林业科技. 2024(03): 9-20 .
    6. 龚世豪,查同刚,张晓霞,张恒硕,高连炜,于洋. 晋西黄土区典型林分凋落物-土壤养分对降雨再分配变化的响应. 生态学报. 2024(17): 7748-7759 .
    7. 窦金萍,武小钢,杨秀云,陈冠光,靳雅君,吴茜. 不同类型豆科植物群落凋落物对城市土壤质量的影响. 林业调查规划. 2024(05): 198-204 .
    8. 贾亚倢,杨建英,张建军,胡亚伟,张犇,赵炯昌,李阳,唐鹏. 晋西黄土区林分密度对油松人工林生物量及土壤理化性质的影响. 浙江农林大学学报. 2024(06): 1211-1221 .
    9. 陈涛,王露露,王思崇,朱学灵,叶永忠. 河南省丘陵低山区刺槐人工林立地分类及立地质量评价. 西北林学院学报. 2023(01): 153-159 .
    10. 高利强,刘莹,王国梁. 人工和天然油松林表层土壤不同粒径团聚体有机碳及其组分分布特征. 水土保持学报. 2023(02): 320-328 .
    11. 孙阔,袁兴中,王晓锋,袁嘉,候春丽,魏丽景. 三峡水库消落带土壤养分含量及生态化学计量特征. 长江流域资源与环境. 2023(02): 403-414 .
    12. 张誉. 不同造林技术对水土保持林土壤特性的影响研究. 广东蚕业. 2023(03): 50-52 .
    13. 钟欢,董文渊,浦婵,谢泽轩,张炜,郑静楠,夏莉. 滇东北4种类型筇竹林分土壤碳氮磷生态化学计量特征研究. 西南林业大学学报(自然科学). 2023(03): 111-119 .
    14. 魏亚娟,刘美英,解云虎,李星. 吉兰泰盐湖防护体系建立38 a以来土壤养分特征. 干旱区研究. 2023(05): 747-755 .
    15. 党记刚. 陕西黄土区典型人工林分结构与水土保持功能耦合关系研究. 科技创新与生产力. 2023(08): 47-50 .
    16. 朱燕,翟博超,孙美美,罗伶书,王瑛,杜盛. 黄土丘陵区不同密度刺槐和油松人工林土壤理化性质与化学计量特征. 水土保持研究. 2023(06): 160-167 .
    17. 兰道云,毕华兴,赵丹阳,王宁,云慧雅,王珊珊,崔艳红. 晋西黄土区不同密度油松人工林保育土壤功能评价. 水土保持学报. 2022(02): 189-196 .
    18. 郭强,官凤英,辉朝茂,刘蔚漪,邹学明. 密度和施肥调控对巨龙竹新竹生长及生物量特征的影响. 北京林业大学学报. 2022(04): 95-106 . 本站查看
    19. 张恒宇,孙树臣,吴元芝,安娟,宋红丽. 黄土高原不同植被密度条件下土壤水、碳、氮分布特征. 生态环境学报. 2022(05): 875-884 .
    20. 郭鑫,魏天兴,陈宇轩,沙国良,任康,于欢. 黄土丘陵区典型退耕恢复植被土壤生态化学计量特征. 干旱区地理. 2022(06): 1899-1907 .
    21. 梁广国,陶建元,郭坤,王子旗,张艳明,王金颖. 不同林型、不同林分密度植被下土壤养分及其化学计量比研究. 吉林林业科技. 2021(06): 14-21 .

    Other cited types(13)

Catalog

    Article views (947) PDF downloads (58) Cited by(34)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return