• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhang Liyu, Zhang Junhui, Zhang Lei, Chen Wei, Han Shijie. Response of fine root morphology of Larix gmelinii and Betula platyphylla to environmental changes[J]. Journal of Beijing Forestry University, 2019, 41(6): 15-23. DOI: 10.13332/j.1000-1522.20180396
Citation: Zhang Liyu, Zhang Junhui, Zhang Lei, Chen Wei, Han Shijie. Response of fine root morphology of Larix gmelinii and Betula platyphylla to environmental changes[J]. Journal of Beijing Forestry University, 2019, 41(6): 15-23. DOI: 10.13332/j.1000-1522.20180396

Response of fine root morphology of Larix gmelinii and Betula platyphylla to environmental changes

More Information
  • Received Date: December 17, 2018
  • Revised Date: March 23, 2019
  • Available Online: June 02, 2019
  • Published Date: May 31, 2019
  • ObjectiveFine root is the primary organ for trees to absorb nutrients and water, and plays a significant role in the nutrient cycling and energy flowing of terrestrial ecosystems. Despite our understanding of the importance of fine roots for carbon and nutrient cycling, lack of understanding of acclimation and adaptation mechanisms of fine roots under different environmental conditions is a key shortcoming in the future projection about the consequences of climate change. The purpose of this paper is to compare the plasticity of fine root morphology under different environmental conditions and the morphology of fine roots of two tree species, and to analyze the effects of environmental factors and ectomycorrhizal colonization on fine root morphology.
    MethodThis paper takes the dominant species of Larix gmelinii and Betula platyphylla in the permafrost regions of the Xing ’an Mountains (Yichun permafrost degraded area, Nanwenghe permafrost degraded sensitive area, Mohe permafrost area of northeastern China) as the research object, the intact root segments were sampled by excavation method in the growing season. We measured the diameter, specific root length, specific surface area, tissue density and ectomycorrhizal colonization rate of primary development roots (1st and 2nd root).
    ResultSoil available nitrogen, soil total carbon and monthly mean temperature of growing season were the main factors affecting the morphology. The fine root morphology of Larix gmelinii differed little (P > 0.05) among the three research sites, and the ectomycorrhizal colonization rate made significant difference (P < 0.05). For Betula platyphylla, the diameter, specific root length, specific surface area and ectomycorrhizal colonization rate were significantly different (P < 0.05), but tissue density did not differ (P > 0.05). The diameter of fine root of Betula platyphylla was the smallest in the Nanwenghe permafrost degraded sensitive area, but specific root length and specific surface area were the largest; the morphological characteristics of fine roots and the colonization rate of ectomycorrhizal fungi exhibited different between two tree species; and the colonization rates of Larix gmelinii and Betula platyphylla were significantly positively correlated with fine root diameter (r = 0.64, P < 0.01; r = 0.61, P < 0.01).
    ConclusionThe soil nutrient and the monthly mean temperature of the growing season are the main factors influencing the morphology of fine roots. Larix gmelinii mainly relies on ectomycorrhizal fungi to adapt to environmental changes, while Betula platyphylla is adjusted by fine root diameter, specific root length and specific surface area and ectomycorrhizal infection rate in response to environmental spatial heterogeneity and the existence of ectomycorrhizal fungi is a crucial alternative absorption strategy.
  • [1]
    Borken W, Kossmann G, Matzner E. Biomass, morphology and nutrient contents of fine roots in four Norway spruce stands[J]. Plant and Soil, 2007, 292(1-2): 79−93. doi: 10.1007/s11104-007-9204-x
    [2]
    Gill R A, Jackson R B. Global patterns of root turnover for terrestrial ecosystems[J]. New Phytologist, 2000, 147(1): 13−31. doi: 10.1046/j.1469-8137.2000.00681.x
    [3]
    倪薇, 霍常富, 王朋. 落叶松(Larix)细根形态特征沿纬度梯度的可塑性[J]. 生态学杂志, 2014, 33(9):2322−2329.

    Ni W, Huo C F, Wang P. Morphological plasticity of fine root traits in Larix plantations across a latitude gradient[J]. Chinese Journal of Ecology, 2014, 33(9): 2322−2329.
    [4]
    Zanetti C, Vennetier M, Mériaux P, et al. Plasticity of tree root system structure in contrasting soil materials and environmental conditions[J]. Plant and Soil, 2015, 387(1−2): 21−35. doi: 10.1007/s11104-014-2253-z
    [5]
    Mou P, Jones R H, Tan Z Q, et al. Morphological and physiological plasticity of plant roots when nutrients are both spatially and temporally heterogeneous[J]. Plant and Soil, 2013, 364(1−2): 373−384. doi: 10.1007/s11104-012-1336-y
    [6]
    Ostonen I, Helmisaari H S, Borken W, et al. Fine root foraging strategies in Norway spruce forests across a European climate gradient[J]. Global Change Biology, 2011, 17(12): 3620−3632. doi: 10.1111/j.1365-2486.2011.02501.x
    [7]
    Helmisaari H S, Derome J, Noid P, et al. Fine root biomass in relation to site and stand characteristics in Norway spruce and Scots pine stands[J]. Tree Physiology, 2007, 27(10): 1493−1504. doi: 10.1093/treephys/27.10.1493
    [8]
    Adams T S, McCormack M L, Eissenstat D M. Foraging strategies in trees of different root morphology: the role of root lifespan[J]. Tree Physiology, 2013, 33(9): 940−948. doi: 10.1093/treephys/tpt067
    [9]
    Burton A J, Pregitzer K S, Hendrick R L. Relationships between fine root dynamics and nitrogen availability in Michigan northern hardwood forests[J]. Oecologia, 2000, 125(3): 389−399. doi: 10.1007/s004420000455
    [10]
    Ostonen I, Rosenvald K, Helmisaari H, et al. Morphological plasticity of ectomycorrhizal short roots in Betula sp and Picea abies forests across climate and forest succession gradients: its role in changing environments [J/OL]. Frontiers in Plant Science, 2013, 4 (2013−09−02) [2017−06−20]. https://doi.org/10.3389/fpls.2013.00335.
    [11]
    Leppälammi-Kujansuu J, Ostonen I, Strömgren M, et al. Effects of long-term temperature and nutrient manipulation on Norway spruce fine roots and mycelia production[J]. Plant and Soil, 2013, 366(1−2): 287−303. doi: 10.1007/s11104-012-1431-0
    [12]
    刘金梁, 梅莉, 谷加存, 等. 内生长法研究施氮肥对水曲柳和落叶松细根生物量和形态的影响[J]. 生态学杂志, 2009, 28(1):1−6.

    Liu J L, Mei L, Gu J C, et al. Effects of nitrogen fertilization on fine root biomass and morphology of Fraxinus mandshurica and Larix gmelinii: a study with in-growth core approach[J]. Chinese Journal of Ecology, 2009, 28(1): 1−6.
    [13]
    Ostonen I, Püttsepp Ü, Biel C, et al. Specific root length as an indicator of environmental change[J]. Plant Biosystems, 2007, 141(3): 426−442. doi: 10.1080/11263500701626069
    [14]
    Eissenstat D M, Kucharski J M, Zadworny M, et al. Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest[J]. New Phytologist, 2015, 208(1): 114−124. doi: 10.1111/nph.2015.208.issue-1
    [15]
    Ostonen I, Lõhmus K, Helmisaari H S, et al. Fine root morphological adaptations in Scots pine, Norway spruce and silver birch along a latitudinal gradient in boreal forests[J]. Tree Physiology, 2007, 27(11): 1627−1634. doi: 10.1093/treephys/27.11.1627
    [16]
    Comas L H, Eissenstat D M. Patterns in root trait variation among 25 co-existing North American forest species[J]. New Phytologist, 2009, 182(4): 919−928. doi: 10.1111/j.1469-8137.2009.02799.x
    [17]
    Kalliokoski T, Pennanen T, Nygren P, et al. Belowground interspecific competition in mixed boreal forests: fine root and ectomycorrhiza characteristics along stand developmental stage and soil fertility gradients[J]. Plant and Soil, 2010, 330(1−2): 73−89. doi: 10.1007/s11104-009-0177-9
    [18]
    郭良栋, 田春杰. 菌根真菌的碳氮循环功能研究进展[J]. 微生物学通报, 2013, 40(1):158−171.

    Guo L D, Tian C J. Progress of the function of mycorrhizal fungi in the cycle of carbon and nitrogen[J]. Microbiology China, 2013, 40(1): 158−171.
    [19]
    Nilsson L O, Giesler R, Bååth E, et al. Growth and biomass of mycorrhizal mycelia in coniferous forests along short natural nutrient gradients[J]. New Phytologist, 2005, 165(2): 613−622.
    [20]
    Bahr A, Ellström M, Akselsson C, et al. Growth of ectomycorrhizal fungal mycelium along a Norway spruce forest nitrogen deposition gradient and its effect on nitrogen leakage[J]. Soil Biology and Biochemistry, 2013, 59: 38−48. doi: 10.1016/j.soilbio.2013.01.004
    [21]
    何瑞霞, 金会军, 吕兰芝, 等. 东北北部冻土退化与寒区生态环境变化[J]. 冰川冻土, 2009, 31(3):525−531.

    He R X, Jin H J, Lü L Z, et al. Recent changes of permafrost and cold regions environments in the northern part of northeastern China[J]. Journal of Glaciology and Geocryology, 2009, 31(3): 525−531.
    [22]
    金会军, 李述训, 王绍令, 等. 气候变化对中国多年冻土和寒区环境的影响[J]. 地理学报, 2000, 55(2):161−173. doi: 10.3321/j.issn:0375-5444.2000.02.004

    Jin H J, Li S X, Wang S L, et al. Impacts of climatic change on permafrost and cold regions environments in China[J]. Acta Geographica Sinica, 2000, 55(2): 161−173. doi: 10.3321/j.issn:0375-5444.2000.02.004
    [23]
    赵一宇, 杜瀹聪. 大小兴安岭林区森林沼泽成因、类型及其分布规律的研究[J]. 东北林学院学报, 1980(1):27−35.

    Zhao Y Y, Du Y C. Research on contributing factor types and the rule of distribution of forestry Swamp in the Large and Lesser Xing ’an Mountains[J]. Journal of North-Eastern Forestry Institute, 1980(1): 27−35.
    [24]
    韩士杰, 王庆贵. 北方森林生态系统对全球气候变化的响应研究进展[J]. 北京林业大学学报, 2016, 38(4):1−20.

    Han S J, Wang Q G. Response of boreal forest ecosystem to global climate change: a review[J]. Journal of Beijing Forestry University, 2016, 38(4): 1−20.
    [25]
    Weemstra M, Sterck F J, Visser E J W, et al. Fine-root trait plasticity of beech (Fagus sylvatica) and spruce (Picea abies) forests on two contrasting soils[J]. Plant and Soil, 2017, 415(1−2): 175−188. doi: 10.1007/s11104-016-3148-y
    [26]
    王文娜, 王燕, 王韶仲, 等. 氮有效性增加对细根解剖、形态特征和菌根侵染的影响[J]. 应用生态学报, 2016, 27(4):1294−1302.

    Wang W N, Wang Y, Wang S Z, et al. Effects of elevated N availability on anatomy, morphology and mycorrhizal colonization of fine roots[J]. Chinese Journal of Applied Ecology, 2016, 27(4): 1294−1302.
    [27]
    闫国永, 王晓春, 邢亚娟, 等. 兴安落叶松林细根解剖结构和化学组分对N沉降的响应[J]. 北京林业大学学报, 2016, 38(4):36−43.

    Yan G Y, Wang X C, Xing Y J, et al. Response of root anatomy and tissue chemistry to nitrogen deposition in larch forest in the Great Xing ’an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2016, 38(4): 36−43.
    [28]
    Bauhus J, Khanna P K, Menden N. Aboveground and belowground interactions in mixed plantations of Eucalyptus globulus and Acacia mearnsii[J]. Canadian Journal of Forest Research, 2000, 30(12): 1886−1894. doi: 10.1139/x00-141
    [29]
    Eissenstat D M. On the relationship between specific root length and the rate of root proliferation-a field-study using citrus rootstocks[J]. New Phytologist, 1991, 118(1): 63−68. doi: 10.1111/nph.1991.118.issue-1
    [30]
    Lõhmus K, Truu M, Truu J, et al. Functional diversity of culturable bacterial communities in the rhizosphere in relation to fine-root and soil parameters in alder stands on forest, abandoned agricultural, and oil-shale mining areas[J]. Plant and Soil, 2006, 283(1−2): 1−10. doi: 10.1007/s11104-005-2509-8
    [31]
    Espeleta J F, Donovan L A. Fine root demography and morphology in response to soil resources availability among xeric and mesic sandhill tree species[J]. Functional Ecology, 2002, 16(1): 113−121. doi: 10.1046/j.0269-8463.2001.00590.x
    [32]
    Meier I C, Leuschner C. Genotypic variation and phenotypic plasticity in the drought response of fine roots of European beech[J]. Tree Physiology, 2008, 28(2): 297−309. doi: 10.1093/treephys/28.2.297
    [33]
    Holdaway R J, Richardson S J, Dickie I A, et al. Species-and community-level patterns in fine root traits along a 120 000-year soil chronosequence in temperate rain forest[J]. Journal of Ecology, 2011, 99(4): 954−963. doi: 10.1111/jec.2011.99.issue-4
    [34]
    Prieto I, Roumet C, Cardinael R, et al. Root functional parameters along a land-use gradient: evidence of a community-level economics spectrum[J]. Journal of Ecology, 2015, 103(2): 361−373. doi: 10.1111/1365-2745.12351
    [35]
    Reich P B. The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto[J]. Journal of Ecology, 2014, 102(2): 275−301. doi: 10.1111/1365-2745.12211
    [36]
    Ostonen I, Lõhmus K, Lasn R. The role of soil conditions in fine root ecomorphology in Norway spruce (Picea abies (L.) Karst)[J]. Plant and Soil, 1999, 208(2): 283−292. doi: 10.1023/A:1004552907597
    [37]
    刘延滨, 牟溥. 植物养分捕获的菌根塑性: 外生菌根的塑性[J]. 植物生态学报, 2010, 34(12):1472−1484.

    Liu Y B, Mou P. Mycorrhizal plasticity of plant nutrient foraging: a review of ectomycorrhizal plasticity[J]. Chinese Journal of Plant Ecology, 2010, 34(12): 1472−1484.
    [38]
    Allen M F. Mycorrhizal fungi: highways for water and nutrients in arid soils[J]. Vadose Zone Journal, 2007, 6(2): 291−297. doi: 10.2136/vzj2006.0068
    [39]
    Wallander H. A new hypothesis to explain allocation of dry matter between mycorrhizal fungi and pine seedlings in relation to nutrient supply[J]. Plant and Soil, 1995, 168-169(1): 243−248. doi: 10.1007/BF00029334
    [40]
    Pierret A, Doussan C, Capowiez Y, et al. Root functional architecture: a framework for modeling the interplay between roots and soil[J]. Vadose Zone Journal, 2009, 6(2): 269−281. doi: 10.2136/vzj2006.0067
    [41]
    娄鑫, 谷岩, 张军辉, 等. 冬季积雪与冻融对土壤团聚体稳定性的影响[J]. 北京林业大学学报, 2016, 38(4):63−70.

    Lou X, Gu Y, Zhang J H, et al. Effects of snow cover and freeze-thaw cycles on stability of surface soil aggregates in forest[J]. Journal of Beijing Forestry University, 2016, 38(4): 63−70.
  • Related Articles

    [1]Cui Yanhong, Bi Huaxing, Hou Guirong, Wang Ning, Wang Shanshan, Zhao Danyang, Ma Xiaozhi, Yun Huiya. Soil infiltration characteristics and influencing factors of Robinia pseudoacacia plantation in the loess gully region of western Shanxi Province, northern China[J]. Journal of Beijing Forestry University, 2021, 43(1): 77-87. DOI: 10.12171/j.1000-1522.20200122
    [2]Li Cong, Lu Mei, Ren Yulian, Du Fan, Tao Hai, Yang Luoping, Wang Dongxu. Distribution of soil nitrogen components of Wenshan typical subtropical forests along an altitude gradient and its influencing factors in Yunnan Province of southwestern China[J]. Journal of Beijing Forestry University, 2020, 42(12): 63-73. DOI: 10.12171/j.1000-1522.20200252
    [3]Wang Fengjuan, Tong Xinyu, Xia Xiaoyu, Fu Qun, Guo Qingqi. Effects of simulated different cooking temperatures on the quality of Korean pine seed oil and principal component analysis[J]. Journal of Beijing Forestry University, 2019, 41(11): 116-124. DOI: 10.13332/j.1000-1522.20190115
    [4]Zhao Yu, Jin Kun. Preliminary analysis on the summer habitat selection of Mongolia subspecies of goitred gazelle in Wulate, Inner Mongolia of northern China[J]. Journal of Beijing Forestry University, 2019, 41(3): 115-123. DOI: 10.13332/j.1000-1522.20180049
    [5]Li Lianqiang, Niu Shukui, Chen Feng, Tao Changsen, Chen Ling, Zhang Peng. Analysis on surface potential fire behavior and combustion of Miaofeng Mountain Forest Farm in Beijing[J]. Journal of Beijing Forestry University, 2019, 41(3): 58-67. DOI: 10.13332/j.1000-1522.20180361
    [6]AN Hai-long, LIU Qing-qian, CAO Xue-hui, ZHANG Gang, WANG Hui, LIU Chao, GUO Hui-hong, XIA Xin-li, YIN Wei-lun. Absorption features of PAHs in leaves of common tree species at different PM2.5 polluted places[J]. Journal of Beijing Forestry University, 2016, 38(1): 59-66. DOI: 10.13332/j.1000--1522.20150164
    [7]CHEN Si-yu, YANG Hui, HAN Jiao, ZHANG Da-wei, ZHAO Shan-shan, ZHANG Zhong-hui, GUO Zhong-ling, YANG Yu-chun. Provenance variation of seed traits of Juglans mandshurica in Changbai mountains, northeastern China.[J]. Journal of Beijing Forestry University, 2015, 37(12): 32-40. DOI: 10.13332/j.1000-1522.20150278
    [8]QU Chao-qi, MAN Xiu-ling, DUAN Liang-liang. Comprehensive evaluation on the effects of different biological agents on survival rate, growth, physiological and biochemical indexes of desert plant Yucca brevifolia seedlings[J]. Journal of Beijing Forestry University, 2012, 34(4): 67-72.
    [9]ZHUANG Jian-qi, , CUI Peng, GE Yong-gang, HONG Yong. Relationship between rainfall characteristics and total amount of debris flow[J]. Journal of Beijing Forestry University, 2009, 31(4): 77-83.
    [10]MO Chang-ming, MA Xiao-jun, , QI Li-wang, BAI Long-hua, SHI Lei, FENG Shi-xin. Genetic variation, correlation and path analysis of Siraitia grosvenorii germplasm characters.[J]. Journal of Beijing Forestry University, 2008, 30(4): 121-125.

Catalog

    Article views (3609) PDF downloads (79) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return