Citation: | Zhang Mingzhu, Ye Xingzhuang, Liu Yipeng, Li Jiahui, Chen Shipin, Zhang Guofang, Liu Bao. Predicting the potential geographical distribution of Erythrophleum fordii in China based on SSPs[J]. Journal of Beijing Forestry University, 2022, 44(4): 54-65. DOI: 10.12171/j.1000-1522.20210308 |
[1] |
Intergovernmental Panel on Climate Change(IPCC). Climate change 2013: the physical science basis: Working Group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2013.
|
[2] |
Cornel D, Buttinger-kreuzhuber A, Konev A, et al. Interactive visualization of flood and heavy rain simulations[J]. Computer Graphics Forum, 2019, 38(3): 25−39. doi: 10.1111/cgf.13669
|
[3] |
Zhang Z, Xu S, Capinha C, et al. Using species distribution model to predict the impact of climate change on the potential distribution of Japanese whiting Sillago japonica[J]. Ecological Indicators, 2019, 104: 333−340. doi: 10.1016/j.ecolind.2019.05.023
|
[4] |
Lozano V, Marzialetti F, Carranza M L, et al. Modelling Acacia saligna invasion in a large mediterranean island using PAB factors: a tool for implementing the European legislation on invasive species[J]. Ecological Indicators, 2020, 116: 106516. doi: 10.1016/j.ecolind.2020.106516
|
[5] |
Janet F, Jennifer A M. Mapping species distributions: spatial inference and prediction[M]. Cambridge: Cambridge University Press, 2010.
|
[6] |
Papes M, Gaubert P. Modelling ecological niches from low numbers of occurrences: assessment of the conservation status of poorly known viverrids (Mammalia, Carnivora) across two continents[J]. Diversity and Distributions, 2007, 13: 890−902. doi: 10.1111/j.1472-4642.2007.00392.x
|
[7] |
叶利奇, 张伟皓, 叶兴状, 等. 基于Maxent模型的珙桐潜在分布预测及其重要影响因子分析[J]. 四川农业大学学报, 2021, 39(5): 604−612.
Ye L Q, Zhang W H, Ye X Z, et al. Prediction of potential distribution area and analysis of dominant environmental variables of Davidia involucrate based on Maxent[J]. Journal of Sichuan Agricultural University, 2021, 39(5): 604−612.
|
[8] |
赵文龙, 陈红刚, 刘录宏, 等. 气候变化对濒危藏药红花绿绒蒿适生区分布格局的影响[J]. 中国药学杂志, 2021, 56(16): 1306−1312.
Zhao W L, Chen H G, Liu L H, et al. The impact of climate change on the distribution pattern of the suitable growing region for endangered Tibetan medicine Meconopsis punicea[J]. Chinese Pharmaceutical Journal, 2021, 56(16): 1306−1312.
|
[9] |
肖建华, 丁鑫, 蔡超男, 等. 闽楠(Phoebe bournei, Lauraceae)地理分布及随气候变化的分布格局模拟[J]. 生态学报, 2021, 41(14): 5703−5712.
Xiao J H, Ding X, Cai C N, et al. Simulation of the potential distribution of Phoebe bournei with climate changes using the maximum-entropy (MaxEnt) model[J]. Acta Ecologica Sinica, 2021, 41(14): 5703−5712.
|
[10] |
Wu T, Lu Y, Fang Y, et al. The Beijing Climate Center Climate System Model (BCC-CSM): the main progress from CMIP5 to CMIP6[J]. Geoscientific Model Development, 2019, 12(4): 1573−1600. doi: 10.5194/gmd-12-1573-2019
|
[11] |
徐玉梅, 杨德军, 陈勇, 等. 格木山地造林幼林生长规律研究[J]. 林业调查规划, 2020, 45(4): 132−135. doi: 10.3969/j.issn.1671-3168.2020.04.026
Xu Y M, Yang D J, Chen Y, et al. Growth law of young Erythrophleum fordii plantation in mountainous area[J]. Forest Inventory and Planning, 2020, 45(4): 132−135. doi: 10.3969/j.issn.1671-3168.2020.04.026
|
[12] |
黄忠良, 郭贵仲, 张祝平. 渐危植物格木的濒危机制及其繁殖特性的研究[J]. 生态学报, 1997, 17(6): 671−676.
Huang Z L, Guo G Z, Zhang Z P. A study about endangered mechanism of Erythrophleum fordii[J]. Acta Ecologica Sinica, 1997, 17(6): 671−676.
|
[13] |
唐玉贵, 蒋燚. 几个值得大力发展的优良珍贵树种(一)[J]. 广西林业科学, 2008, 37(3): 137−140. doi: 10.3969/j.issn.1006-1126.2008.03.006
Tang Y G, Jiang Y. Superior and rare species worth vigorous development (Ⅰ)[J]. Guangxi Forestry Science, 2008, 37(3): 137−140. doi: 10.3969/j.issn.1006-1126.2008.03.006
|
[14] |
杨保国, 刘士玲, 郝建, 等. 珍贵树种格木研究进展[J]. 广西林业科学, 2017, 46(2): 165−170. doi: 10.3969/j.issn.1006-1126.2017.02.009
Yang B G, Liu S L, Hao J, et al. Research advances on the rare tree of Erythrophleum fordii[J]. Guangxi Forestry Science, 2017, 46(2): 165−170. doi: 10.3969/j.issn.1006-1126.2017.02.009
|
[15] |
彭玉华, 黄志玲, 郝海坤, 等. 施肥对珍稀濒危树种格木苗木的影响[J]. 广西林业科学, 2015, 44(3): 232−238. doi: 10.3969/j.issn.1006-1126.2015.03.004
Peng Y H, Hang Z L, Hao H K, et al. Effects of fertilization on seedlings of rare and endangered species Erythrophleum fordii[J]. Guangxi Forestry Science, 2015, 44(3): 232−238. doi: 10.3969/j.issn.1006-1126.2015.03.004
|
[16] |
陈旋, 胡颖, 孙明升, 等. 外源调节物质对铅胁迫下格木幼苗生理特性的影响[J]. 林业科学, 2021, 57(2): 39−48. doi: 10.11707/j.1001-7488.20210205
Chen X, Hu Y, Sun M S, et al. Effects of exogenous regulating substances on physiological characteristics of Erythrophleum fordii seedlings under lead stress[J]. Scientia Silvae Sinicae, 2021, 57(2): 39−48. doi: 10.11707/j.1001-7488.20210205
|
[17] |
Ranjitkar S, Xu J, Shrestha K K, et al. Ensemble forecast of climate suitability for the Trans-Himalayan Nyctaginaceae species[J]. Ecological Modelling, 2014, 282: 18−24. doi: 10.1016/j.ecolmodel.2014.03.003
|
[18] |
Gao T, Xu Q, Liu Y, et al. Predicting the potential geographic distribution of Sirex nitobei in China under climate change using maximum entropy model[J]. Forests, 2021, 12(2): 151. doi: 10.3390/f12020151
|
[19] |
王璐, 许晓岗, 李垚. 末次盛冰期以来陀螺果潜在地理分布格局变迁预测[J]. 生态学杂志, 2018, 37(1): 278−286.
Wang L, Xu X G, Li Y. Prediction of potential geographical distribution pattern change for Melliodendron xylocarpum Handel-Mazzetti since the last glacial maximum[J]. Chinese Journal of Ecology, 2018, 37(1): 278−286.
|
[20] |
Merow C, Smith M J, Silander J A. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter[J]. Ecography, 2013, 36: 1058−1069. doi: 10.1111/j.1600-0587.2013.07872.x
|
[21] |
Brismar J. Understanding receiver-operating-characteristic curves: a graphic approach[J]. American Journal of Roentgenology, 1991, 157(5): 1119−1121. doi: 10.2214/ajr.157.5.1927798
|
[22] |
Porfirio L L, Harris R, Lefroy E C, et al. Improving the use of species distribution models in conservation planning and management under climate change[J/OL]. PLoS One, 2014, 9: e113749[2022−01−02]. https://doi.org/10.1371/journal.pone.0113749.
|
[23] |
Swets J. Measuring the accuracy of diagnostic systems[J]. Science, 1988, 240: 1285−1293. doi: 10.1126/science.3287615
|
[24] |
陈润政, 傅家瑞. 格木种子休眠和萌发生理的研究[J]. 林业科学, 1984, 20(1): 35−41.
Chen R Z, Fu J R. Studies on the physiology of seed dormancy and germination of Erythrophleum fordii[J]. Scientia Silvae Sinicae, 1984, 20(1): 35−41.
|
[25] |
赵志刚, 郭俊杰, 沙二, 等. 我国格木的地理分布与种实表型变异[J]. 植物学报, 2009, 44(3): 338−344. doi: 10.3969/j.issn.1674-3466.2009.03.011
Zhao Z G, Guo J J, Sha E, et al. Geographic distribution and phenotypic variation of fruit and seed of Erythrophleum fordii in China[J]. Chinese Bulletin of Botany, 2009, 44(3): 338−344. doi: 10.3969/j.issn.1674-3466.2009.03.011
|
[26] |
Rocchini D, Hortal J, Lengyel S, et al. Accounting for uncertainty when mapping species distributions: the need for maps of ignorance[J]. Progress in Physical Geography, 2011, 35(2): 211−226. doi: 10.1177/0309133311399491
|
[27] |
Elith J, Leathwick J R. Species distribution models: ecological explanation and prediction across space and time[J]. Annual Review of Ecology, Evolution, and Systematics, 2009, 40(1): 677−697. doi: 10.1146/annurev.ecolsys.110308.120159
|
[28] |
王野影, 唐明, 李菲, 等. 中国植物谱系地理学研究进展[J]. 分子植物育种, 2018, 16(23): 341−348.
Wang Y Y, Tang M, Li F, et al. Research progress in plants phylogeography in China[J]. Molecular Plant Breeding, 2018, 16(23): 341−348.
|
[29] |
Hampe A. Bioclimate envelope models: what they detect and what they hide[J]. Global Ecology and Biogeography, 2004, 13: 469−476.
|
[30] |
Etterson J R. Constraint to adaptive evolution in response to global warming[J]. Science, 2001, 294: 151−154. doi: 10.1126/science.1063656
|
[31] |
邱浩杰, 孙杰杰, 徐达, 等. 末次盛冰期以来红豆树在不同气候变化情景下的分布动态[J]. 生态学报, 2020, 40(9): 3016−3026.
Qiu H J, Sun J J, Xu D, et al. The distribution dynamics of Ormosia hosiei under different climate change scenarios since the last glacial maximum[J]. Acta Ecologica Sinica, 2020, 40(9): 3016−3026.
|
[32] |
Thomas A, Michele G, Roberto S. Does ecological marginality reflect physiological marginality in plants?[J]. Plant Biosystems, 2020, 154(2): 149−157.
|
[33] |
亢亚超, 刘萍, 王凌晖, 等. 格木幼苗对硝普钠−酸铝互作的生理响应[J]. 植物科学学报, 2019, 37(4): 521−529.
Kang Y C, Liu P, Wang L H, et al. Physiological responses of Erythrophleum fordii seedlings under SNP-AlCl3 interaction[J]. Plant Science Journal, 2019, 37(4): 521−529.
|
[34] |
张杰, 曹丽格, 李修仓, 等. IPCC AR5中社会经济新情景(SSPs)研究的最新进展[J]. 气候变化研究进展, 2013, 9(3): 225−228.
Zhang J, Cao L G, Li X C, et al. Advances in shared socio-economic pathways in IPCC AR5[J]. Climate Change Research, 2013, 9(3): 225−228.
|
[35] |
李建林, 唐旭清. 气候变化对陆地生态系统影响评估模型的研究进展[J]. 草原与草坪, 2014, 34(6): 86−93.
Li J L, Tang X Q. The research progress on assessment model of ecosystem under global climate change[J]. Grassland and Turf, 2014, 34(6): 86−93.
|
[36] |
Pompe S, Hanspach J, Badeck F, et al. Climate and land use change impacts on plant distributions in Germany[J]. Biology Letters, 2008, 4: 564−567. doi: 10.1098/rsbl.2008.0374
|
[37] |
李璇, 李垚, 方炎明. 基于优化的MaxEnt模型预测白栎在中国的潜在分布区[J]. 林业科学, 2018, 54(8): 153−164. doi: 10.11707/j.1001-7488.20180817
Li X, Li Y, Fang Y M. Prediction of potential suitable distribution areas of Quercus fabri in China based on an optimized MaxEnt model[J]. Scientia Silvae Sinicae, 2018, 54(8): 153−164. doi: 10.11707/j.1001-7488.20180817
|
[38] |
欧阳林男, 陈少雄, 刘学锋, 等. 赤桉在中国的适生地理区域及其对气候变化的响应[J]. 林业科学, 2019, 55(12): 1−11. doi: 10.11707/j.1001-7488.20191201
Ouyang L N, Chen S X, Liu X F, et al. Suitable geographic range for Eucalyptus camaldulensis in China and its response[J]. Scientia Silvae Sinicae, 2019, 55(12): 1−11. doi: 10.11707/j.1001-7488.20191201
|
[39] |
Yu F, Wang T, Groen T A, et al. Climate and land use changes will degrade the distribution of rhododendrons in China[J]. Science of The Total Environment, 2019, 659: 515−528. doi: 10.1016/j.scitotenv.2018.12.223
|
[40] |
Valladares F, Matesanz S, Guilhaumon F, et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change[J]. Ecology Letters, 2014, 17(11): 1351−1364. doi: 10.1111/ele.12348
|
[41] |
Frishkoff L O, Karp D S, Flanders J R, et al. Climate change and habitat conversion favour the same species[J]. Ecology Letters, 2016, 19: 1081−1090. doi: 10.1111/ele.12645
|
[42] |
杨启杰, 李睿. 桫椤的潜在适生区及其变化[J]. 应用生态学报, 2021, 32(2): 538−548.
Yang Q J, Li R. Predicting the potential suitable habitats of Alsophila spinulosa and their changes[J]. Chinese Journal of Applied Ecology, 2021, 32(2): 538−548.
|
[43] |
Lenoir J, Svenning J. Climate-related range shifts: a global multidimensional synthesis and new research directions[J]. Ecography, 2015, 38(1): 15−28. doi: 10.1111/ecog.00967
|
[44] |
郑芊卉, 周春国, 韦海航, 等. 各国应对气候变化自主贡献目标及林业对策[J]. 世界林业研究, 2019, 32(2): 1−6.
Zheng Q H, Zhou C G, Wei H H, et al. National determined contribution in response to climate change and its forestry countermeasures[J]. World Forestry Research, 2019, 32(2): 1−6.
|
[45] |
韦菊玲, 刘福妹, 雷丽群, 等. 珍稀濒危树种格木更新障碍研究进展[J]. 林业调查规划, 2018, 43(4): 42−45, 108. doi: 10.3969/j.issn.1671-3168.2018.04.009
Wei J L, Liu F M, Lei L Q, et al. Study on natural regeneration barriers of rare and endangered tree species of Erythrophleum fordii[J]. Forest Inventory and Planning, 2018, 43(4): 42−45, 108. doi: 10.3969/j.issn.1671-3168.2018.04.009
|
1. |
翁慧莹,刘益鹏,杨黔越,叶兴状,毕远洋,张国防,陈世品,刘宝. 福建柏地理分布及随气候变化的分布格局模拟. 生态学报. 2025(01): 137-146 .
![]() | |
2. |
罗楚滢,佘济云,唐子朝. 基于SSPs气候场景的濒危植物银杉潜在分布区预测. 南京林业大学学报(自然科学版). 2024(01): 161-168 .
![]() | |
3. |
童丽丽,程瑶,许晓岗,王洪超,田露,蒋孝禹. 未来气候变化下白花龙在我国的潜在适生区预测. 浙江林业科技. 2024(05): 1-8 .
![]() | |
4. |
肖模佳,徐放,张炳建,曾梓锋. 国有林场珍贵树种发展策略浅析. 农业与技术. 2023(01): 42-44 .
![]() | |
5. |
张华峰. 珍稀濒危物种金斑喙凤蝶在我国潜在适生区预测. 井冈山大学学报(自然科学版). 2023(03): 56-62 .
![]() | |
6. |
何学高,刘欢,张婧,程炜,丁鹏,贾丰铭,李卿,刘超. 基于优化的MaxEnt模型预测青海省祁连圆柏潜在分布区. 北京林业大学学报. 2023(12): 19-31 .
![]() | |
7. |
刘佳琪,魏广阔,史常青,赵廷宁,钱云楷. 基于MaxEnt模型的北方抗旱造林树种适宜区分布. 北京林业大学学报. 2022(07): 63-77 .
![]() |