• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhang Mingzhu, Ye Xingzhuang, Liu Yipeng, Li Jiahui, Chen Shipin, Zhang Guofang, Liu Bao. Predicting the potential geographical distribution of Erythrophleum fordii in China based on SSPs[J]. Journal of Beijing Forestry University, 2022, 44(4): 54-65. DOI: 10.12171/j.1000-1522.20210308
Citation: Zhang Mingzhu, Ye Xingzhuang, Liu Yipeng, Li Jiahui, Chen Shipin, Zhang Guofang, Liu Bao. Predicting the potential geographical distribution of Erythrophleum fordii in China based on SSPs[J]. Journal of Beijing Forestry University, 2022, 44(4): 54-65. DOI: 10.12171/j.1000-1522.20210308

Predicting the potential geographical distribution of Erythrophleum fordii in China based on SSPs

More Information
  • Received Date: August 18, 2021
  • Revised Date: November 08, 2021
  • Available Online: March 21, 2022
  • Published Date: April 24, 2022
  •   Objective  As a rare hard wood species, the natural forest resources of Erythrophleum fordii have been seriously damaged due to its precious wood. Its distribution range is sharply reduced and the E. fordii is rare. Therefore, it is listed as the second class protected rare tree species in China. We studied the impacts of climate change on the geographical distribution of E. fordii in order to provide some theoretical knowledge for the protection and introduction of its natural resources.
      Method  Based on 55 distribution stands of E. fordii, using the BCC-CSM2-MR climate model and shared socio-economic pathways (SSPs) as climate data, combining with elevation, soil and human activity data, the MaxEnt model was used to predict the growth distribution of E. fordii under three scenarios of SSP1_2.6, SSP2_4.5 and SSP5_8.5 in 2041−2060 (2050s) and 2081−2100 (2090s).
      Result  The prediction results were relatively reliable when the feature combination was HPT and the regularization multiplier was 2.5. Comprehensive contribution rate, permutation importance and jackknife test showed that temperature annual range, precipitation in January, elevation, annual precipitation, mean diurnal range were the dominant factors affecting the geographic distribution of E. fordii. The total growth-suitable area of E. fordii decreased under SSP1_2.6 and SSP2_4.5, while the total growth-suitable area of E. fordii increased under SSP5_8.5, and there was a growth advantage under this scenario. The northern part of the original growth-suitable areas of Fujian, Guangxi and Guangdong, the southern small part of Yunnan and Tibet, and the southern part of Sichuan Basin will become the potential suitable areas of E. fordii. By analyzing the direction of centroid migration in the three scenarios during 2050s and 2090s, the centroid had a tendency to migrate more and more northward.
      Conclusion  Temperature, precipitation and elevation were the dominant factors affecting the geographic distribution of E. fordii under current and future climate scenarios. The temperature and humidity increase caused by extreme climate change can promote the growth of E. fordii to a certain extent, the low mountains and hills in the northwest of Guangdong and Guangxi, Xishuangbanna in Yunnan can be introduced and cultivated in order to expand the planting area of E. fordii in the whole country. it is necessary to strengthen the protection of E. fordii in time and take active and effective measures to reduce the negative impact of climate change on E. fordii in order to cope with the uncertainty brought by climate change.
  • [1]
    Intergovernmental Panel on Climate Change(IPCC). Climate change 2013: the physical science basis: Working Group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2013.
    [2]
    Cornel D, Buttinger-kreuzhuber A, Konev A, et al. Interactive visualization of flood and heavy rain simulations[J]. Computer Graphics Forum, 2019, 38(3): 25−39. doi: 10.1111/cgf.13669
    [3]
    Zhang Z, Xu S, Capinha C, et al. Using species distribution model to predict the impact of climate change on the potential distribution of Japanese whiting Sillago japonica[J]. Ecological Indicators, 2019, 104: 333−340. doi: 10.1016/j.ecolind.2019.05.023
    [4]
    Lozano V, Marzialetti F, Carranza M L, et al. Modelling Acacia saligna invasion in a large mediterranean island using PAB factors: a tool for implementing the European legislation on invasive species[J]. Ecological Indicators, 2020, 116: 106516. doi: 10.1016/j.ecolind.2020.106516
    [5]
    Janet F, Jennifer A M. Mapping species distributions: spatial inference and prediction[M]. Cambridge: Cambridge University Press, 2010.
    [6]
    Papes M, Gaubert P. Modelling ecological niches from low numbers of occurrences: assessment of the conservation status of poorly known viverrids (Mammalia, Carnivora) across two continents[J]. Diversity and Distributions, 2007, 13: 890−902. doi: 10.1111/j.1472-4642.2007.00392.x
    [7]
    叶利奇, 张伟皓, 叶兴状, 等. 基于Maxent模型的珙桐潜在分布预测及其重要影响因子分析[J]. 四川农业大学学报, 2021, 39(5): 604−612.

    Ye L Q, Zhang W H, Ye X Z, et al. Prediction of potential distribution area and analysis of dominant environmental variables of Davidia involucrate based on Maxent[J]. Journal of Sichuan Agricultural University, 2021, 39(5): 604−612.
    [8]
    赵文龙, 陈红刚, 刘录宏, 等. 气候变化对濒危藏药红花绿绒蒿适生区分布格局的影响[J]. 中国药学杂志, 2021, 56(16): 1306−1312.

    Zhao W L, Chen H G, Liu L H, et al. The impact of climate change on the distribution pattern of the suitable growing region for endangered Tibetan medicine Meconopsis punicea[J]. Chinese Pharmaceutical Journal, 2021, 56(16): 1306−1312.
    [9]
    肖建华, 丁鑫, 蔡超男, 等. 闽楠(Phoebe bournei, Lauraceae)地理分布及随气候变化的分布格局模拟[J]. 生态学报, 2021, 41(14): 5703−5712.

    Xiao J H, Ding X, Cai C N, et al. Simulation of the potential distribution of Phoebe bournei with climate changes using the maximum-entropy (MaxEnt) model[J]. Acta Ecologica Sinica, 2021, 41(14): 5703−5712.
    [10]
    Wu T, Lu Y, Fang Y, et al. The Beijing Climate Center Climate System Model (BCC-CSM): the main progress from CMIP5 to CMIP6[J]. Geoscientific Model Development, 2019, 12(4): 1573−1600. doi: 10.5194/gmd-12-1573-2019
    [11]
    徐玉梅, 杨德军, 陈勇, 等. 格木山地造林幼林生长规律研究[J]. 林业调查规划, 2020, 45(4): 132−135. doi: 10.3969/j.issn.1671-3168.2020.04.026

    Xu Y M, Yang D J, Chen Y, et al. Growth law of young Erythrophleum fordii plantation in mountainous area[J]. Forest Inventory and Planning, 2020, 45(4): 132−135. doi: 10.3969/j.issn.1671-3168.2020.04.026
    [12]
    黄忠良, 郭贵仲, 张祝平. 渐危植物格木的濒危机制及其繁殖特性的研究[J]. 生态学报, 1997, 17(6): 671−676.

    Huang Z L, Guo G Z, Zhang Z P. A study about endangered mechanism of Erythrophleum fordii[J]. Acta Ecologica Sinica, 1997, 17(6): 671−676.
    [13]
    唐玉贵, 蒋燚. 几个值得大力发展的优良珍贵树种(一)[J]. 广西林业科学, 2008, 37(3): 137−140. doi: 10.3969/j.issn.1006-1126.2008.03.006

    Tang Y G, Jiang Y. Superior and rare species worth vigorous development (Ⅰ)[J]. Guangxi Forestry Science, 2008, 37(3): 137−140. doi: 10.3969/j.issn.1006-1126.2008.03.006
    [14]
    杨保国, 刘士玲, 郝建, 等. 珍贵树种格木研究进展[J]. 广西林业科学, 2017, 46(2): 165−170. doi: 10.3969/j.issn.1006-1126.2017.02.009

    Yang B G, Liu S L, Hao J, et al. Research advances on the rare tree of Erythrophleum fordii[J]. Guangxi Forestry Science, 2017, 46(2): 165−170. doi: 10.3969/j.issn.1006-1126.2017.02.009
    [15]
    彭玉华, 黄志玲, 郝海坤, 等. 施肥对珍稀濒危树种格木苗木的影响[J]. 广西林业科学, 2015, 44(3): 232−238. doi: 10.3969/j.issn.1006-1126.2015.03.004

    Peng Y H, Hang Z L, Hao H K, et al. Effects of fertilization on seedlings of rare and endangered species Erythrophleum fordii[J]. Guangxi Forestry Science, 2015, 44(3): 232−238. doi: 10.3969/j.issn.1006-1126.2015.03.004
    [16]
    陈旋, 胡颖, 孙明升, 等. 外源调节物质对铅胁迫下格木幼苗生理特性的影响[J]. 林业科学, 2021, 57(2): 39−48. doi: 10.11707/j.1001-7488.20210205

    Chen X, Hu Y, Sun M S, et al. Effects of exogenous regulating substances on physiological characteristics of Erythrophleum fordii seedlings under lead stress[J]. Scientia Silvae Sinicae, 2021, 57(2): 39−48. doi: 10.11707/j.1001-7488.20210205
    [17]
    Ranjitkar S, Xu J, Shrestha K K, et al. Ensemble forecast of climate suitability for the Trans-Himalayan Nyctaginaceae species[J]. Ecological Modelling, 2014, 282: 18−24. doi: 10.1016/j.ecolmodel.2014.03.003
    [18]
    Gao T, Xu Q, Liu Y, et al. Predicting the potential geographic distribution of Sirex nitobei in China under climate change using maximum entropy model[J]. Forests, 2021, 12(2): 151. doi: 10.3390/f12020151
    [19]
    王璐, 许晓岗, 李垚. 末次盛冰期以来陀螺果潜在地理分布格局变迁预测[J]. 生态学杂志, 2018, 37(1): 278−286.

    Wang L, Xu X G, Li Y. Prediction of potential geographical distribution pattern change for Melliodendron xylocarpum Handel-Mazzetti since the last glacial maximum[J]. Chinese Journal of Ecology, 2018, 37(1): 278−286.
    [20]
    Merow C, Smith M J, Silander J A. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter[J]. Ecography, 2013, 36: 1058−1069. doi: 10.1111/j.1600-0587.2013.07872.x
    [21]
    Brismar J. Understanding receiver-operating-characteristic curves: a graphic approach[J]. American Journal of Roentgenology, 1991, 157(5): 1119−1121. doi: 10.2214/ajr.157.5.1927798
    [22]
    Porfirio L L, Harris R, Lefroy E C, et al. Improving the use of species distribution models in conservation planning and management under climate change[J/OL]. PLoS One, 2014, 9: e113749[2022−01−02]. https://doi.org/10.1371/journal.pone.0113749.
    [23]
    Swets J. Measuring the accuracy of diagnostic systems[J]. Science, 1988, 240: 1285−1293. doi: 10.1126/science.3287615
    [24]
    陈润政, 傅家瑞. 格木种子休眠和萌发生理的研究[J]. 林业科学, 1984, 20(1): 35−41.

    Chen R Z, Fu J R. Studies on the physiology of seed dormancy and germination of Erythrophleum fordii[J]. Scientia Silvae Sinicae, 1984, 20(1): 35−41.
    [25]
    赵志刚, 郭俊杰, 沙二, 等. 我国格木的地理分布与种实表型变异[J]. 植物学报, 2009, 44(3): 338−344. doi: 10.3969/j.issn.1674-3466.2009.03.011

    Zhao Z G, Guo J J, Sha E, et al. Geographic distribution and phenotypic variation of fruit and seed of Erythrophleum fordii in China[J]. Chinese Bulletin of Botany, 2009, 44(3): 338−344. doi: 10.3969/j.issn.1674-3466.2009.03.011
    [26]
    Rocchini D, Hortal J, Lengyel S, et al. Accounting for uncertainty when mapping species distributions: the need for maps of ignorance[J]. Progress in Physical Geography, 2011, 35(2): 211−226. doi: 10.1177/0309133311399491
    [27]
    Elith J, Leathwick J R. Species distribution models: ecological explanation and prediction across space and time[J]. Annual Review of Ecology, Evolution, and Systematics, 2009, 40(1): 677−697. doi: 10.1146/annurev.ecolsys.110308.120159
    [28]
    王野影, 唐明, 李菲, 等. 中国植物谱系地理学研究进展[J]. 分子植物育种, 2018, 16(23): 341−348.

    Wang Y Y, Tang M, Li F, et al. Research progress in plants phylogeography in China[J]. Molecular Plant Breeding, 2018, 16(23): 341−348.
    [29]
    Hampe A. Bioclimate envelope models: what they detect and what they hide[J]. Global Ecology and Biogeography, 2004, 13: 469−476.
    [30]
    Etterson J R. Constraint to adaptive evolution in response to global warming[J]. Science, 2001, 294: 151−154. doi: 10.1126/science.1063656
    [31]
    邱浩杰, 孙杰杰, 徐达, 等. 末次盛冰期以来红豆树在不同气候变化情景下的分布动态[J]. 生态学报, 2020, 40(9): 3016−3026.

    Qiu H J, Sun J J, Xu D, et al. The distribution dynamics of Ormosia hosiei under different climate change scenarios since the last glacial maximum[J]. Acta Ecologica Sinica, 2020, 40(9): 3016−3026.
    [32]
    Thomas A, Michele G, Roberto S. Does ecological marginality reflect physiological marginality in plants?[J]. Plant Biosystems, 2020, 154(2): 149−157.
    [33]
    亢亚超, 刘萍, 王凌晖, 等. 格木幼苗对硝普钠−酸铝互作的生理响应[J]. 植物科学学报, 2019, 37(4): 521−529.

    Kang Y C, Liu P, Wang L H, et al. Physiological responses of Erythrophleum fordii seedlings under SNP-AlCl3 interaction[J]. Plant Science Journal, 2019, 37(4): 521−529.
    [34]
    张杰, 曹丽格, 李修仓, 等. IPCC AR5中社会经济新情景(SSPs)研究的最新进展[J]. 气候变化研究进展, 2013, 9(3): 225−228.

    Zhang J, Cao L G, Li X C, et al. Advances in shared socio-economic pathways in IPCC AR5[J]. Climate Change Research, 2013, 9(3): 225−228.
    [35]
    李建林, 唐旭清. 气候变化对陆地生态系统影响评估模型的研究进展[J]. 草原与草坪, 2014, 34(6): 86−93.

    Li J L, Tang X Q. The research progress on assessment model of ecosystem under global climate change[J]. Grassland and Turf, 2014, 34(6): 86−93.
    [36]
    Pompe S, Hanspach J, Badeck F, et al. Climate and land use change impacts on plant distributions in Germany[J]. Biology Letters, 2008, 4: 564−567. doi: 10.1098/rsbl.2008.0374
    [37]
    李璇, 李垚, 方炎明. 基于优化的MaxEnt模型预测白栎在中国的潜在分布区[J]. 林业科学, 2018, 54(8): 153−164. doi: 10.11707/j.1001-7488.20180817

    Li X, Li Y, Fang Y M. Prediction of potential suitable distribution areas of Quercus fabri in China based on an optimized MaxEnt model[J]. Scientia Silvae Sinicae, 2018, 54(8): 153−164. doi: 10.11707/j.1001-7488.20180817
    [38]
    欧阳林男, 陈少雄, 刘学锋, 等. 赤桉在中国的适生地理区域及其对气候变化的响应[J]. 林业科学, 2019, 55(12): 1−11. doi: 10.11707/j.1001-7488.20191201

    Ouyang L N, Chen S X, Liu X F, et al. Suitable geographic range for Eucalyptus camaldulensis in China and its response[J]. Scientia Silvae Sinicae, 2019, 55(12): 1−11. doi: 10.11707/j.1001-7488.20191201
    [39]
    Yu F, Wang T, Groen T A, et al. Climate and land use changes will degrade the distribution of rhododendrons in China[J]. Science of The Total Environment, 2019, 659: 515−528. doi: 10.1016/j.scitotenv.2018.12.223
    [40]
    Valladares F, Matesanz S, Guilhaumon F, et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change[J]. Ecology Letters, 2014, 17(11): 1351−1364. doi: 10.1111/ele.12348
    [41]
    Frishkoff L O, Karp D S, Flanders J R, et al. Climate change and habitat conversion favour the same species[J]. Ecology Letters, 2016, 19: 1081−1090. doi: 10.1111/ele.12645
    [42]
    杨启杰, 李睿. 桫椤的潜在适生区及其变化[J]. 应用生态学报, 2021, 32(2): 538−548.

    Yang Q J, Li R. Predicting the potential suitable habitats of Alsophila spinulosa and their changes[J]. Chinese Journal of Applied Ecology, 2021, 32(2): 538−548.
    [43]
    Lenoir J, Svenning J. Climate-related range shifts: a global multidimensional synthesis and new research directions[J]. Ecography, 2015, 38(1): 15−28. doi: 10.1111/ecog.00967
    [44]
    郑芊卉, 周春国, 韦海航, 等. 各国应对气候变化自主贡献目标及林业对策[J]. 世界林业研究, 2019, 32(2): 1−6.

    Zheng Q H, Zhou C G, Wei H H, et al. National determined contribution in response to climate change and its forestry countermeasures[J]. World Forestry Research, 2019, 32(2): 1−6.
    [45]
    韦菊玲, 刘福妹, 雷丽群, 等. 珍稀濒危树种格木更新障碍研究进展[J]. 林业调查规划, 2018, 43(4): 42−45, 108. doi: 10.3969/j.issn.1671-3168.2018.04.009

    Wei J L, Liu F M, Lei L Q, et al. Study on natural regeneration barriers of rare and endangered tree species of Erythrophleum fordii[J]. Forest Inventory and Planning, 2018, 43(4): 42−45, 108. doi: 10.3969/j.issn.1671-3168.2018.04.009
  • Cited by

    Periodical cited type(7)

    1. 翁慧莹,刘益鹏,杨黔越,叶兴状,毕远洋,张国防,陈世品,刘宝. 福建柏地理分布及随气候变化的分布格局模拟. 生态学报. 2025(01): 137-146 .
    2. 罗楚滢,佘济云,唐子朝. 基于SSPs气候场景的濒危植物银杉潜在分布区预测. 南京林业大学学报(自然科学版). 2024(01): 161-168 .
    3. 童丽丽,程瑶,许晓岗,王洪超,田露,蒋孝禹. 未来气候变化下白花龙在我国的潜在适生区预测. 浙江林业科技. 2024(05): 1-8 .
    4. 肖模佳,徐放,张炳建,曾梓锋. 国有林场珍贵树种发展策略浅析. 农业与技术. 2023(01): 42-44 .
    5. 张华峰. 珍稀濒危物种金斑喙凤蝶在我国潜在适生区预测. 井冈山大学学报(自然科学版). 2023(03): 56-62 .
    6. 何学高,刘欢,张婧,程炜,丁鹏,贾丰铭,李卿,刘超. 基于优化的MaxEnt模型预测青海省祁连圆柏潜在分布区. 北京林业大学学报. 2023(12): 19-31 . 本站查看
    7. 刘佳琪,魏广阔,史常青,赵廷宁,钱云楷. 基于MaxEnt模型的北方抗旱造林树种适宜区分布. 北京林业大学学报. 2022(07): 63-77 . 本站查看

    Other cited types(3)

Catalog

    Article views (710) PDF downloads (67) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return