• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Liu Jiaqi, Wei Guangkuo, Shi Changqing, Zhao Tingning, Qian Yunkai. Suitable distribution area of drought-resistant afforestation tree species in north China based on MaxEnt model[J]. Journal of Beijing Forestry University, 2022, 44(7): 63-77. DOI: 10.12171/j.1000-1522.20210527
Citation: Liu Jiaqi, Wei Guangkuo, Shi Changqing, Zhao Tingning, Qian Yunkai. Suitable distribution area of drought-resistant afforestation tree species in north China based on MaxEnt model[J]. Journal of Beijing Forestry University, 2022, 44(7): 63-77. DOI: 10.12171/j.1000-1522.20210527

Suitable distribution area of drought-resistant afforestation tree species in north China based on MaxEnt model

More Information
  • Received Date: December 12, 2021
  • Revised Date: February 22, 2022
  • Available Online: July 11, 2022
  • Published Date: July 24, 2022
  •   Objective  Pinus sylvestris var. mongolica, Pinus tabuliformis, Amygdalus davidiana and Armeniaca sibirica are commonly used afforestation tree species in semi-arid and semi-humid areas, which have drought-resistant and cold-resistant characteristics and the function of soil and water conservation. Studying their suitable spatial distribution can guide the vegetation restoration in northern China.
      Method  Based on the ecological characteristics of tree species, with the data of tree species distribution and 24 environmental variables (topography, soil and meteorology), based on the Co-Kriging method, the limiting factor superposition method and the maximum entropy model (MaxEnt) were combined to study the distribution of the suitable areas of 4 tree species.
      Result  (1) The prediction accuracy of MaxEnt model of four tree species reached the accurate level (AUC > 0.90). (2)The dominant factors affecting the distribution of Pinus sylvestris var. mongolica were ordered as soil type, average temperature in the coldest month and average wind speed in the coldest month. The dominant factors of Pinus tabuliformis were ordered as elevation, standard deviation of annual average temperature, soil type and annual precipitation; the dominant factors of Amygdalus davidiana were ordered as the average temperature of the warmest month, elevation, annual extreme minimum temperature, standard deviation of annual precipitation, slope and soil type; the dominant factors of Prunus armeniaca were elevation, soil type, average precipitation in the warmest month, wetting coefficient and average temperature in the warmest month in turn. (3) The middle and high suitable areas of Pinus sylvestris var. mongolica were mainly distributed in Inner Mongolia of northern China, Heilongjiang and Jilin provinces of northeastern China, Pinus tabuliformis, Amygdalus davidiana and Armeniaca sibirica were mainly distributed in Shanxi, Hebei provinces and Inner Mongolia of northern China, Shaanxi, Gansu provinces of northwestern China,
      Conclusion  In this study, MaxEnt model can accurately reflect the distribution of four tree species, and the results can provide scientific guidance for the afforestation in the semi-arid and semi-humid climate regions of China.
  • [1]
    程林仙, 王万瑞, 仁宗启, 等. 陕北仁用杏气候适宜性区划[J]. 西北林学院学报, 2001, 16(2): 18−21. doi: 10.3969/j.issn.1001-7461.2001.02.005

    Cheng L X, Wang W R, Ren Z Q, et al. Climatic adaptability division for apricot in northern Shaanxi[J]. Journal of Northwest Forestry University, 2001, 16(2): 18−21. doi: 10.3969/j.issn.1001-7461.2001.02.005
    [2]
    赖文豪, 席沁, 武海龙, 等. 内蒙古兴和县低山丘陵立地类型划分与林草适宜性评价[J]. 浙江农林大学学报, 2018, 35(2): 331−339. doi: 10.11833/j.issn.2095-0756.2018.02.018

    Lai W H, Xi Q, Wu H L, et al. Site classification type and vegetation suitability evaluation for hilly land in Xinghe, Inner Mongolia[J]. Journal of Zhejiang A&F University, 2018, 35(2): 331−339. doi: 10.11833/j.issn.2095-0756.2018.02.018
    [3]
    闫烨琛. 大清河流域山丘区立地类型划分与评价[D]. 北京: 北京林业大学, 2020.

    Yan Y C. Classification and evaluation of site types in hilly areas of Daqing River Basin [D]. Beijing: Beijing Forestry University, 2020.
    [4]
    周立江. 低效林评判与改造途径的探讨[J]. 四川林业科技, 2004, 25(1): 16−21. doi: 10.3969/j.issn.1003-5508.2004.01.003

    Zhou L J. Discussion on judgment and rebuilding approaches of low-efficiency forest[J]. Journal of Sichuan Forestry Science and Technology, 2004, 25(1): 16−21. doi: 10.3969/j.issn.1003-5508.2004.01.003
    [5]
    张明珠, 叶兴状, 刘益鹏, 等. 基于SSPs预测格木在中国的潜在地理分布[J]. 北京林业大学学报, 2022, 44(4): 54−65. doi: 10.12171/j.1000-1522.20210308

    Zhang M Z, Ye X Z, Liu Y P, et al. Predicting the potential geographical distribution of Erythrophleum fordii in China based on SSPs[J]. Journal of Beijing Forestry University, 2022, 44(4): 54−65. doi: 10.12171/j.1000-1522.20210308
    [6]
    Ahmed S E, Mcinerny G, O’Hara K, et al. Scientists and software-surveying the species distribution modelling community[J]. Diversity & Distributions, 2015, 21(3): 258−267.
    [7]
    郭虹扬, 史明昌, 杨建英, 等. 白洋淀大清河流域油松精准适宜性空间分布[J]. 浙江农林大学学报, 2021, 38(6): 1−9. doi: 10.11833/j.issn.2095-0756.20200751

    Guo H Y, Shi M C, Yang J Y, et al. Precise spatial distribution of suitability of Pinus tabulaeformis in Daqing River Basin, Baiyangdian[J]. Journal of Zhejiang A&F University, 2021, 38(6): 1−9. doi: 10.11833/j.issn.2095-0756.20200751
    [8]
    张春华, 和菊, 孙永玉, 等. 基于MaxEnt模型的紫椿适生区预测[J]. 北京林业大学学报, 2017, 39(8): 33−41. doi: 10.13332/j.1000-1522.20170002

    Zhang C H, He J, Sun Y Y, et al. Distributional change in suitable areas for Toona sureni based on MaxEnt model[J]. Journal of Beijing Forestry University, 2017, 39(8): 33−41. doi: 10.13332/j.1000-1522.20170002
    [9]
    Sharifian S, Kamrani E, Saeedi H. Global future distributions of mangrove crabs in response to climate change[J]. Wetlands, 2021, 41(8): 1−14.
    [10]
    黄睿智, 于涛, 赵辉, 等. 气候变化背景下濒危植物梓叶槭在中国适生分布区预测[J]. 北京林业大学学报, 2021, 43(5): 33−43. doi: 10.12171/j.1000-1522.20200254

    Huang R Z, Yu T, Zhao H, et al. Prediction of suitable distribution area of endangered plant Acer catalpa in China under the background of climate change[J]. Journal of Beijing Forestry University, 2021, 43(5): 33−43. doi: 10.12171/j.1000-1522.20200254
    [11]
    刘维, 赵儒楠, 圣倩倩, 等. 矮牡丹在中国的地理分布及潜在分布区预测[J]. 北京林业大学学报, 2021, 43(12): 83−92. doi: 10.12171/j.1000-1522.20200360

    Liu W, Zhao R N, Sheng Q Q, et al. Geographical distribution and potential distribution area prediction of Paeonia jishanensis in China[J]. Journal of Beijing Forestry University, 2021, 43(12): 83−92. doi: 10.12171/j.1000-1522.20200360
    [12]
    满多清, 孙坤, 刘世增, 等. 干旱荒漠区樟子松幼苗的抗逆性分析[J]. 甘肃农业大学学报, 2004, 39(5): 543−547. doi: 10.3969/j.issn.1003-4315.2004.05.017

    Man D Q, Sun K, Liu S Z, et al. A research on seedling resistance of Pinus sylvestris var. mongolica in arid desert area[J]. Journal of Gansu Agricultural University, 2004, 39(5): 543−547. doi: 10.3969/j.issn.1003-4315.2004.05.017
    [13]
    Xi Q, Lai W H, Cui Y Y, et al. Effect of yeast extract on seedling growth promotion and soil improvement in afforestation in a semiarid chestnut soil area[J/OL]. Forests, 2019, 10(1): 76[2021-12-20]. https://doi.org/10.3390/f10010076.
    [14]
    Zhebentyayeva T, Reighard G, Gorina V, et al. Simple sequence repeat (SSR) analysis for assessment of genetic variability in apricot germplasm[J]. Theoretical and Applied Genetics, 2003, 106(3): 435−444. doi: 10.1007/s00122-002-1069-z
    [15]
    于笑, 纪若璇, 常远, 等. 四种抗旱植物在不同区域的生长稳定性[J]. 应用生态学报, 2021, 32(12): 4212−4222. doi: 10.13287/j.1001-9332.202112.011

    Yu X, Ji R X, Chang Y, et al. Growth stability of four drought resistant plant species in different regions[J]. Chinese Journal of Applied Ecology, 2021, 32(12): 4212−4222. doi: 10.13287/j.1001-9332.202112.011
    [16]
    张淑勇, 周泽福, 张光灿, 等. 水分胁迫下天然次生灌木山桃和山杏光合气体交换特征[J]. 西北植物学报, 2008, 28(12): 2492−2499. doi: 10.3321/j.issn:1000-4025.2008.12.021

    Zhang S Y, Zhou Z F, Zhang G C, et al. Gas exchange characteristics of natural secondary shrubs Prunus davidiana and Prunus sibirica under different water stresses[J]. Acta Botanica Boreali-Occidentalia Sinica, 2008, 28(12): 2492−2499. doi: 10.3321/j.issn:1000-4025.2008.12.021
    [17]
    Garzón M, Blazek R, Neteler M, et al. Predicting habitat suitability with machine learning models: the potential area of Pinus sylvestris L. in the Iberian Peninsula[J]. Ecological Modelling, 2006, 197(3−4): 383−393. doi: 10.1016/j.ecolmodel.2006.03.015
    [18]
    张晨星, 张炜, 徐晶晶, 等. 基于GIS和最大熵模型的河北省油松适宜性分布分析[J]. 地理与地理信息科学, 2020, 36(6): 18−25. doi: 10.3969/j.issn.1672-0504.2020.06.004

    Zhang C X, Zhang W, Xu J J, et al. Analysis on suitability distribution of Pinus tabulaeformis in Hebei Province based on GIS and MaxEnt model[J]. Geography and Geo-Information Science, 2020, 36(6): 18−25. doi: 10.3969/j.issn.1672-0504.2020.06.004
    [19]
    吕振刚, 李文博, 黄选瑞, 等. 气候变化情景下河北省3个优势树种适宜分布区预测[J]. 林业科学, 2019, 55(3): 13−21. doi: 10.11707/j.1001-7488.20190302

    Lü Z G, Li W B, Huang X R, et al. Predicting suitable distribution area of three dominant tree species under climate change scenarios in Hebei Province[J]. Scientia Silvae Sinicae, 2019, 55(3): 13−21. doi: 10.11707/j.1001-7488.20190302
    [20]
    Vasquez V L, de Lima A A, dos Santos A P, et al. Influence of spatial extent on habitat suitability models for primate species of Atlantic forest[J/OL]. Ecological Informatics, 2021, 61: 101179[2022−02−10]. https://doi.org/10.1016/j.ecoinf.2020.101179.
    [21]
    李昂. 应用ArcGIS软件和最大熵模型分析樟子松潜在分布及其气候适宜性[D]. 沈阳: 沈阳农业大学, 2016.

    Li A. Using ArcGIS software and maximum entropy model to analyze the potential distribution and climate suitability of Pinus sylvestris var. mongolica [D]. Shenyang: Shenyang Agricultural University, 2016.
    [22]
    唐燕, 赵儒楠, 任钢, 等. 基于MaxEnt模型的中华枸杞潜在分布预测及其重要影响因子分析[J]. 北京林业大学学报, 2021, 43(6): 23−32. doi: 10.12171/j.1000-1522.20200103

    Tang Y, Zhao R N, Ren G, et al. Prediction of potential distribution of Lycium chinense based on MaxEnt model and analysis of its important influencing factors[J]. Journal of Beijing Forestry University, 2021, 43(6): 23−32. doi: 10.12171/j.1000-1522.20200103
    [23]
    王爱君, 路东晔, 张国盛, 等. 基于MaxEnt模拟欧亚大陆气候变化下叉子圆柏的潜在分布[J]. 林业科学, 2021, 57(8): 43−55. doi: 10.11707/j.1001-7488.20210805

    Wang A J, Lu D Y, Zhang G S, et al. Potential distribution of Juniperus sabina under climate change in Eurasia continent based on MaxEnt model[J]. Scientia Silvae Sinicae, 2021, 57(8): 43−55. doi: 10.11707/j.1001-7488.20210805
    [24]
    Zhou Y, Zhang Z, Zhu B, et al. MaxEnt modeling based on CMIP6 models to project potential suitable zones for Cunninghamia lanceolata in China[J/OL]. Forests, 2021, 12(6): 752[2022−02−10]. https://doi.org/10.3390/f12060752.
    [25]
    赵宇铭, 邱新法, 朱晓晨, 等. 1971—2010年中国干湿区降雨资源变化特征分析[J]. 长江科学院院报, 2019, 36(5): 34−41.

    Zhao Y M, Qiu X F, Zhu X C, et al. Characteristics of rainfall amount variations in wet and drv partitions of China from 1971 to 2010[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(5): 34−41.
    [26]
    祖力卡尔·海力力, 赵廷宁, 姜群鸥. 西北干旱荒漠区边界范围及变化分析[J]. 干旱区地理, 2021, 44(6): 1635−1643.

    Zulikar H, Zhao T N, Jiang Q O. Boundary scope and change of arid desert area in northwest China[J]. Arid Land Geography, 2021, 44(6): 1635−1643.
    [27]
    中国植物志编辑委员会. 中国植物志[M]. 北京: 科学出版社, 1978.

    Editorial Board of Flora of China. Flora of China[M]. Beijing: Science Press, 1978.
    [28]
    阳宽达, 谢红霞, 隋兵, 等. 基于GIS的降雨空间插值研究: 以湖南省为例[J]. 水土保持研究, 2020, 27(3): 134−138.

    Yang K D, Xie H X, Sui B, et al. Research on spatial interpolation of rainfall based on GIS: a case study of Hunan Province[J]. Research of Soil and Water Conservation, 2020, 27(3): 134−138.
    [29]
    李宗梅, 张增祥, 赵晓丽, 等. 全国干湿分布区动态变化研究[J]. 地球与环境, 2017, 45(4): 420−433.

    Li Z M, Zhang Z X, Zhao X L, et al. Study on the dynamic change of dry and wet distribution areas in China[J]. Earth and Environment, 2017, 45(4): 420−433.
    [30]
    赵兴梁, 李万英. 樟子松[M]. 北京: 农业出版社, 1963: 154.

    Zhao X L, Li W Y. Pinus sylvestris var. mongolica [M]. Beijing: Agriculture Press, 1963: 154.
    [31]
    徐化成. 油松[M]. 北京: 中国林业出版社, 1993.

    Xu H C. Pinus tabuliformis [M]. Beijing: China Forestry Publishing House, 1993.
    [32]
    吴征镒. 中国植被[M]. 北京: 科学出版社, 1980.

    Wu Z Y. Vegetation in China [M]. Beijing: Science Press, 1980.
    [33]
    贾光林, 王珍, 李家春, 等. 山桃仁产地适宜性分析[J]. 湖北农业科学, 2011, 50(18): 3778−3780. doi: 10.3969/j.issn.0439-8114.2011.18.033

    Jia G L, Wang Z, Li J C, et al. Regional suitability evaluation of Prunus daviadiana[J]. Hubei Agricultural Sciences, 2011, 50(18): 3778−3780. doi: 10.3969/j.issn.0439-8114.2011.18.033
    [34]
    Jaynes E T. Information theory and statistical mechanics[J]. Physical Review, 1957, 106(4): 343–369.
    [35]
    车乐, 曹博, 白成科, 等. 基于MaxEnt和ArcGIS对太白米的潜在分布预测及适宜性评价[J]. 生态学杂志, 2014, 33(6): 1623−1628.

    Che L, Cao B, Bai C K, et al. Predictive distribution and habitat suitability assessment of Notholirion bulbuliferum based on MaxEnt and ArcGIS[J]. Chinese Journal of Ecology, 2014, 33(6): 1623−1628.
    [36]
    古丽米拉·克孜尔别克, 邱琴, 海拉提·克孜尔别克. 基于MaxEnt模型的阿勒泰金莲花潜在适生区预测[J]. 江苏农业科学, 2021, 49(4): 82−87.

    Gulimilla K, Qiu Q, Hailati K. Prediction of potential suitable area of Trollius altaicus based on MaxEnt model[J]. Jiangsu Agricultural Sciences, 2021, 49(4): 82−87.
    [37]
    吴祥云, 姜凤岐, 李晓丹, 等. 樟子松人工固沙林衰退的规律和原因[J]. 应用生态学报, 2004, 15(12): 2225−2228. doi: 10.3321/j.issn:1001-9332.2004.12.006

    Wu X Y, Jiang F Q, Li X D, et al. Decline regularity and causes of Pinus sylvestris var. mongolica plantation on sandy land[J]. Chinese Journal of Applied Ecology, 2004, 15(12): 2225−2228. doi: 10.3321/j.issn:1001-9332.2004.12.006
    [38]
    赵哈林, 李瑾, 周瑞莲, 等. 不同强度净风频繁吹袭对樟子松(Pinus sylvestris var. mongolica)幼苗光合蒸腾特征的影响[J]. 生态学报, 2017, 37(5): 1431−1437.

    Zhao H L, Li J, Zhou R L, et al. Effects of wind frequency on the rates of photosynthesis and transpiration in Pinus sylvestris var. mongolica seedlings[J]. Acta Ecologica Sinica, 2017, 37(5): 1431−1437.
    [39]
    肖敏, 胡卓玮, 董琳. 基于MaxEnt模型的油松潜在地理分布研究[J]. 地理空间信息, 2017, 15(6): 34−37. doi: 10.3969/j.issn.1672-4623.2017.06.010

    Xiao M, Hu Z W, Dong L. Potential geographical distribution of Pinus Tabuliformis based on MaxEnt model[J]. Geospatial Information, 2017, 15(6): 34−37. doi: 10.3969/j.issn.1672-4623.2017.06.010
    [40]
    郑景云, 尹云鹤, 李炳元. 中国气候区划新方案[J]. 地理学报, 2010, 65(1): 3−12. doi: 10.11821/xb201001002

    Zheng J Y, Yin Y H, Li B Y. A new scheme for climate regionalization in China[J]. Acta Geographica Sinica, 2010, 65(1): 3−12. doi: 10.11821/xb201001002
    [41]
    Wang, Jr, Hawkins, et al. Photosynthesis, water and nitrogen use efficiencies of four paper birch (Betula papyrifera) populations grown under different soil moisture and nutrient regimes[J]. Forest Ecol Manage, 1998, 112(3): 233−244.
    [42]
    Ribes A, Azas J M, Planton S. A method for regional climate change detection using smooth temporal patterns[J]. Climate Dynamics, 2010, 35(2): 391−406.
    [43]
    张家琛, 党怡雯, 陈亚恒. 基于GIS的阜平县北流河区域山杏生态适宜性区划研究[J]. 西南林业大学学报(自然科学), 2021, 41(5): 98−104.

    Zhang J C, Dang Y W, Chen Y H. Ecological suitability regionalization of Armeniaca sibirica in Beiliuhe region of Fuping County based on GIS[J]. Journal of Southwest Forestry University (Natural Sciences), 2021, 41(5): 98−104.
    [44]
    张山清, 吉春容, 普宗朝. 气候变暖对新疆杏种植气候适宜性的影响[J]. 中国农业资源与区划, 2019, 40(9): 131−141.

    Zhang S Q, Ji C R, Pu Z C. Impact of climate warming on climate suitability of apricot planting in Xinjiang[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2019, 40(9): 131−141.
    [45]
    李蒙蒙, 丁国栋, 高广磊, 等. 樟子松(Pinus sylvestris var. mongholica)在中国北方10省(区)引种的适宜性[J]. 中国沙漠, 2016, 36(4): 1021−1028.

    Li M M, Ding G D, Gao G L, et al. Introduction suitability of Pinus sylvestris var. mongholica in 10 northern provinces of China [J]. Journal of Desert Research 2016, 36(4): 1021−1028.
    [46]
    喻方圆, 徐锡增. 植物逆境生理研究进展[J]. 世界林业研究, 2003, 16(5): 6−11. doi: 10.3969/j.issn.1001-4241.2003.05.002

    Yu F Y, Xu X Z. A review on plant stress physiology[J]. World Forestry Research, 2003, 16(5): 6−11. doi: 10.3969/j.issn.1001-4241.2003.05.002
    [47]
    Zhao Q, Zeng D H, Fan Z P. Nitrogen and phosphorus transformations in the rhizospheres of three tree species in a nutrient-poor sandy soil[J]. Applied Soil Ecology, 2010, 46(3): 341−346.
    [48]
    赵晓彬, 刘光哲. 沙地樟子松引种栽培及造林技术研究综述[J]. 西北林学院学报, 2007, 22(5): 86−89. doi: 10.3969/j.issn.1001-7461.2007.05.022

    Zhao X B, Liu G Z. A review of studies of introduction cultivates and afforestation technology on Pinus sylvestris var. mongolica in sandy area[J]. Journal of Northwest Forestry University, 2007, 22(5): 86−89. doi: 10.3969/j.issn.1001-7461.2007.05.022
    [49]
    冯奥哲, 孔涛, 孙溥璠, 等. 沙地不同密度樟子松人工林土壤矿化氮质量分数与矿化特征[J]. 东北林业大学学报, 2021, 49(10): 96−103. doi: 10.3969/j.issn.1000-5382.2021.10.017

    Feng A Z, Kong T, Sun P F, et al. Soil mineralized nitrogen content and mineralization characteristics of Pinus sylvestris var. mongolica plantations with different densities in sandy land[J]. Journal of Northeast Forestry University, 2021, 49(10): 96−103. doi: 10.3969/j.issn.1000-5382.2021.10.017
    [50]
    张雷, 刘世荣, 孙鹏森, 等. 气候变化对物种分布影响模拟中的不确定性组分分割与制图: 以油松为例[J]. 生态学报, 2011, 31(19): 5749−5761.

    Zhang L, Liu S R, Sun P S, et al. Partitioning and mapping the sources of variations in the ensemble forecasting of species distribution under climate change: acase study of Pinus tabulaeformis[J]. Acta Ecologica Sinica, 2011, 31(19): 5749−5761.
    [51]
    Wang T, Wang G, Innes J, et al. Climatic niche models and their consensus projections for future climates for four major forest tree species in the Asia-Pacific region[J]. Forest Ecology & Management, 2016, 360: 357−366.
    [52]
    Fettig C J, Reid M L, Bentz B J, et al. Changing climates, changing forests: a western north American rerspective[J]. Journal of Forestry, 2013, 111(3): 214−228. doi: 10.5849/jof.12-085
    [53]
    Poland T M, Mccullough D G. Emerald A B: invasion of the urban forest and the threat to north America's Ash resource[J]. Journal of Forestry, 2006, 104(3): 118−124.
    [54]
    裴顺祥, 法蕾, 杜满义, 等. 种间关系对中条山油松人工林天然更新及群落稳定性的影响[J]. 林业科学研究, 2022, 35(1): 150−157. doi: 10.13275/j.cnki.lykxyj.2022.01.017

    Pei S X, Fa L, Du M Y, etl. Effects of interspecific relationships on natural regeneration and community stability of Pinus tabulaeformis plantation in Zhong tiao Mountain[J]. Forestry Research, 2022, 35(1): 150−157. doi: 10.13275/j.cnki.lykxyj.2022.01.017
    [55]
    Yang X Q, Kushwaha S, Saran S, et al. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills[J]. Ecological Engineering, 2013, 51: 83−87. doi: 10.1016/j.ecoleng.2012.12.004
  • Related Articles

    [1]Zhang Shuning, Bao Wenquan, Ao Dun, Zhao Guanghua, Wang Lin, Wuyun Tana, Bai Yu’e, Han Qimuge. Potential distribution area and niche change of Prunus mira under context of climate change[J]. Journal of Beijing Forestry University, 2024, 46(9): 45-56. DOI: 10.12171/j.1000-1522.20230014
    [2]Xu Jingya, Liu Tian, Zang Guozhang, Zheng Yiqi. Prediction of suitable areas of Eremochloa ophiuroides in China under different climate scenarios based on MaxEnt model[J]. Journal of Beijing Forestry University, 2024, 46(3): 91-102. DOI: 10.12171/j.1000-1522.20230022
    [3]He Xuegao, Liu Huan, Zhang Jing, Cheng Wei, Ding Peng, Jia Fengming, Li Qing, Liu Chao. Predicting potential suitable distribution areas for Juniperus przewalskii in Qinghai Province of northwestern China based on the optimized MaxEnt model[J]. Journal of Beijing Forestry University, 2023, 45(12): 19-31. DOI: 10.12171/j.1000-1522.20220515
    [4]Liu Jiaqi, Wei Guangkuo, Shi Changqing, Zhao Tingning, Qian Yunkai. Suitable distribution area of drought-resistant afforestation tree species in north China based on MaxEnt model[J]. Journal of Beijing Forestry University, 2022, 44(7): 63-77. DOI: 10.12171/j.1000-1522.20210527
    [5]Liu Wei, Zhao Runan, Sheng Qianqian, Geng Xingmin, Zhu Zunling. Geographical distribution and potential distribution area prediction of Paeonia jishanensis in China[J]. Journal of Beijing Forestry University, 2021, 43(12): 83-92. DOI: 10.12171/j.1000-1522.20200360
    [6]Tang Yan, Zhao Runan, Ren Gang, Cao Fuliang, Zhu Zunling. Prediction of potential distribution of Lycium chinense based on MaxEnt model and analysis of its important influencing factors[J]. Journal of Beijing Forestry University, 2021, 43(6): 23-32. DOI: 10.12171/j.1000-1522.20200103
    [7]Huang Ruizhi, Yu Tao, Zhao Hui, Zhang Shengkai, Jing Yang, Li Junqing. Prediction of suitable distribution area of the endangered plant Acer catalpifolium under the background of climate change in China[J]. Journal of Beijing Forestry University, 2021, 43(5): 33-43. DOI: 10.12171/j.1000-1522.20200254
    [8]Chen Jie, Long Ting, Yang Lan, Wang Yin, Xu Chao, Li Jingwen. Habitat suitability assessment of Taxus cuspidate[J]. Journal of Beijing Forestry University, 2019, 41(4): 51-59. DOI: 10.13332/j.1000-1522.20180408
    [9]Tang Shupei, Mu Liguang, Wang Xiaoling, Zhang Jing, Liu Bo, Menghedalai, Bao Weidong. Habitat suitability assessment based on MaxEnt modeling of Chinese goral in Saihanwula National Nature Reserve, Inner Mongolia of northern China[J]. Journal of Beijing Forestry University, 2019, 41(1): 102-108. DOI: 10.13332/j.1000-1522.20180176
    [10]ZHANG Chao, CHEN Lei, TIAN Cheng-ming, LI Tao, WANG Rong, YANG Qi-qing. Predicting the distribution of dwarf mistletoe (Arceuthobium sichuanense) with GARP and MaxEnt models[J]. Journal of Beijing Forestry University, 2016, 38(5): 23-32. DOI: 10.13332/j.1000-1522.20150516
  • Cited by

    Periodical cited type(11)

    1. 陈舒豪,郭新安. 基于MaxEnt的小蓬草在中国的潜在适生区预测. 湖北林业科技. 2024(02): 35-40 .
    2. 杨艺帅,杨学宇,王玉生,胡秋龙,史子涵,吉进军,廖尹俊,谭琳. 气候变化背景下茶角胸叶甲潜在适生区预测. 湖南农业大学学报(自然科学版). 2023(05): 581-587 .
    3. 刘增力,胡理乐. 珍稀植物篦子三尖杉潜在分布范围及气候变化影响预测. 林业资源管理. 2022(01): 35-42 .
    4. 陈舒豪,程广有. 基于MaxEnt模型的东北红豆杉潜在适生区预测. 北华大学学报(自然科学版). 2022(03): 302-310 .
    5. 王文波,胡理乐,布艾佳尔,闫伯前. 应用Maxent模型对我国珍稀植物刺楸分布预测及其保护空缺分析. 东北林业大学学报. 2022(08): 69-73+97 .
    6. 徐燕玲,王振宇,杨淑达,陆露. 进化生态学在药用植物种质资源评价中的应用与展望. 中草药. 2021(05): 1221-1233 .
    7. 王艳君,高泰,石娟. 基于MaxEnt模型对舞毒蛾全球适生区的预测及分析. 北京林业大学学报. 2021(09): 59-69 . 本站查看
    8. 张央,武建勇,安明态,徐建,叶超,施金竹. 中国硬叶兜兰地理分布格局及其潜在分布区预测. 西北植物学报. 2021(11): 1932-1939 .
    9. 杨维雄,常晓勇,尹建华. 我国铁线莲属植物研究进展. 现代农业科技. 2020(09): 135-137 .
    10. 古元阳,张芳玲,梁晓玉,刘昌,邢韶华,王清春. 基于东北虎潜在栖息地保护的自然保护地整合. 生态学杂志. 2020(05): 1590-1599 .
    11. 张童,黄治昊,彭杨靖,王泳腾,王萍,王诗童,崔国发. 基于Maxent模型的软枣猕猴桃在中国潜在适生区预测. 生态学报. 2020(14): 4921-4928 .

    Other cited types(5)

Catalog

    Article views (1064) PDF downloads (94) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return