Citation: | He Xuegao, Liu Huan, Zhang Jing, Cheng Wei, Ding Peng, Jia Fengming, Li Qing, Liu Chao. Predicting potential suitable distribution areas for Juniperus przewalskii in Qinghai Province of northwestern China based on the optimized MaxEnt model[J]. Journal of Beijing Forestry University, 2023, 45(12): 19-31. DOI: 10.12171/j.1000-1522.20220515 |
This paper aims to predict the potential distribution area of Juniperus przewalskii in Qinghai Province of northwestern China, and to provide a theoretical basis for the management, protection and restoration of J. przewalskii.
The potential distribution of J. przewalskii in Qinghai Province was predicted by a variety of environmental variables (climate, topography, soil, ecosystem and human activity intensity) based on the MaxEnt model optimized by the Kuenm package of R, and the dominant environmental factors and value ranges affecting the geographical distribution of J. przewalskii were discussed, and the accuracy of the prediction results was verified by the project team from 2018 to 2020 in the field survey of J. przewalskii resources in Qinghai Province.
The predicted suitable areas of J. przewalskii were mainly distributed in the eastern, northeastern and northern Qinghai Province, with a suitable area of 32 000 km2. From 2018 to 2020, sub-compartment for field investigations of J. przewalskii resources in Qinghai Province fell into the predicted suitable area, and the environmental conditions suitable for the growth of J. przewalskii, i.e. climate (max. temperature of the warmest month was 15−22 ℃, min. temperature of the coldest month was −23−15 ℃, annual mean precipitation was 300−600 mm, isothermality was < 39%, the variance of precipitation was 88 − 103), topography (elevation was 2 800−3 950 m, slope was 12°−18°, slope to sunny slope, semi-sunny slope and semi-shaded slope), soil (AWC range > 0.4 mm/m), topsoil gypsum < 0.2%), ecosystem type (farmland, forest land and grassland ecosystem). The human footprint index of J. przewalskii distribution area > 10.
In this study, the optimized MaxEnt model can accurately reflect the distribution of potential suitable areas of J. przewalskii. The geographical distribution of J. przewalskii is the result of the comprehensive influence of topography, temperature, precipitation, ecosystem type, soil and human activities, and altitude is the dominant environmental factor affecting the distribution of J. przewalskii in Qinghai Province. The research results can provide a reliable theoretical basis and implementation direction for the selection of suitable space for afforestation in J. przewalskii, and at the same time, the results of the suitability classification of distribution area can provide a reference for the management and protection and restoration decisions of J. przewalskii.
[1] |
吴成基. 自然地理学[M]. 北京: 科学出版社, 2008: 271−282.
Wu C J. Physical geography[M]. Beijing: Science Press, 2008: 271−282.
|
[2] |
Zhan Q Q, Zhao W, Yang M J, et al. A long-term record (1995—2019) of the dynamics of land desertification in the middle reaches of Yarlung Zangbo River Basin derived from Landsat data[J]. Geography and Sustainability, 2021, 2(1): 12−21.
|
[3] |
Li X L, Gao J, Zhang J, et al. Natural and anthropogenic influences on the spatiotemporal change of degraded meadows in southern Qinghai Province, West China: 1976−2015[J]. Applied Geography, 2018, 97: 176−183. doi: 10.1016/j.apgeog.2018.06.011
|
[4] |
曹倩, 高庆波, 郭万军, 等. 基于MaxEnt模拟人类活动与环境因子对青藏高原特有植物祁连獐牙菜潜在分布的影响[J]. 植物科学学报, 2021, 39(1): 22−31.
Cao Q, Gao Q B, Guo W J, et al. Impacts of human activities and environmental factors on potential distribution of Swertia przewalskii Pissjauk, an endemic plant in Qing-Tibetan Plateau, using MaxEnt[J]. Plant Science Journal, 2021, 39(1): 22−31.
|
[5] |
董苏君, 马松梅, 张丹, 等. 新疆猪毛菜属植物多样性地理分布格局及其环境解释[J/OL]. 生态学报, 2023, 43(19): 1−10 [2023−09−01]. https://kns.cnki.net/kcms/detail/11.2031.0.20230515.1410.018.html.
Dong S J, Ma S M, Zhang D, et al. Gegraphy distribution pattern and the enyironmental interpretation of plant species of Salsola genus in Xinjiang[J/OL]. Acta Ecologica Sinica, 2023, 43(19): 1−10 [2023−09−01]. https://kns.cnki.net/kcms/detail/11.2031.0.20230515.1410.018.html.
|
[6] |
Gibson L, Lee T M, Koh L P, et al. Primary forests are irreplaceable for sustaining tropical biodiversity[J]. Nature, 2011, 478: 378−381. doi: 10.1038/nature10425
|
[7] |
Gibson L, Lynam A J, Bradshaw C J A, et al. Near-complete extinction of native small mammal fauna 25 years after forest fragmentation[J]. Science, 2013, 341: 1508−1510. doi: 10.1126/science.1240495
|
[8] |
Bellard C, Bertelsmeier C, Leadley P, et al. Impacts of climate change on the future of biodiversity[J]. Ecology Letters, 2012, 15(4): 365−377. doi: 10.1111/j.1461-0248.2011.01736.x
|
[9] |
张静, 陈志林, 侯晓巍, 等. 三江源区祁连圆柏群落物种多样性沿海拔梯度的变化格局[J]. 西北植物学报, 2020, 40(10): 1759−1767.
Zhang J, Chen Z L, Hou X W, et al. Species diversity of Juniperus przewalskii community in Three River Headwater along altitude gradient[J]. Acta Botanica Boreali-Occidenta-lia Sinica, 2020, 40(10): 1759−1767.
|
[10] |
Peng J F, Gou X H, Chen F H, et al. Climate-growth relationships of Qilian juniper ( Sabina przewalskii) in the Anyemaqen Mountains, Tibet[J]. Climate Research, 2010, 41: 31−40. doi: 10.3354/cr00834
|
[11] |
Piao S L, Fang J Y, He J S. Variations in vegetation net primary production in the Qinghai-Xizang Plateau, China, from 1982 to 1999[J]. Climate Change, 2006, 74: 253−267. doi: 10.1007/s10584-005-6339-8
|
[12] |
Harris R B. Rangeland degradation on the Qinghai-Tibetan plateau: A review of the evidence of its magnitude and causes[J]. Journal of Arid Environments, 2010, 74(1): 1−12.
|
[13] |
雷军成, 徐海根. 基于MaxEnt的加拿大一枝黄花在中国的潜在分布区预测[J]. 生态与农村环境学报, 2010, 26(2): 137−141.
Lei J C, Xu H G. MaxEnt-based prediction of potential distribution of Solidago canadensis in China[J]. Journal of Ecology and Rural Environment, 2010, 26(2): 137−141.
|
[14] |
唐燕, 赵儒楠, 任钢, 等. 基于MaxEnt模型的中华枸杞潜在分布预测及其重要影响因子分析[J]. 北京林业大学学报, 2021, 43(6): 23−32.
Tang Y, Zhao R N, Ren G, et al. Prediction of potential distribution of Lycium chinense based on MaxEnt model and analysis of its important influencing factors[J]. Journal of Beijing Forestry University, 2021, 43(6): 23−32.
|
[15] |
张童, 黄治昊, 彭杨靖, 等. 基于MaxEnt模型的软枣猕猴桃在中国潜在适生区预测[J]. 生态学报, 2020, 40(14): 4921−4928.
Zhang T, Huang Z H, Peng Y J, et al. Prediction of potential suitable areas of Actinidia arguta in China based on MaxEnt model[J]. Acta Ecologica Sinica, 2020, 40(14): 4921−4928.
|
[16] |
朱耿平, 乔慧捷. MaxEnt模型复杂度对物种分布区预测的影响[J]. 生物多样性, 2016, 24(10): 1189−1196. doi: 10.17520/biods.2016265
Zhu G P, Qiao H J. Effect of the MaxEnt model’s complexity on the prediction of species potential distributions[J]. Biodiversity Science, 2016, 24(10): 1189−1196. doi: 10.17520/biods.2016265
|
[17] |
Radosavljevic A, Anderson R P. Making better MaxEnt models of species distributions: complexity, overfitting and evaluation[J]. Journal of Biogeography, 2014, 41: 629−643. doi: 10.1111/jbi.12227
|
[18] |
Cobos M E, Peterson A, Tbarve N, et al. Kuenm: an R package for detailed development of ecological niche models using MaxEnt[J/OL]. Peer J, 2019, 7: e6281[2022−12−20]. https://doi.org/10.7717/peerj.6281.
|
[19] |
Fick S E, Hijmans R J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas[J]. International Journal of Climatology, 2017, 37(12): 4302−4315. doi: 10.1002/joc.5086
|
[20] |
Fischer G, Nachtergaele F, Prieler S, et al. Global agro-ecological zones assessment for agriculture (GAEZ 2008)[J]. IIASA, Laxenburg, Austria and FAO, Rome, Italy, 2008, 10.
|
[21] |
徐新良, 刘纪远, 张增祥, 等. 中国5年间隔陆地生态系统空间分布数据集(1990—2010)内容与研发[J]. 全球变化数据学报, 2017, 1(1): 52−59.
Xu X L, Liu J Y, Zhang Z X, et al. A time series land ecosystem classification dataset of China in five year increments (1990−2010)[J]. Journal of Global Change Data & Discovery, 2017, 1(1): 52−59.
|
[22] |
Venter O, Sanderson E W, Magrach A, et al. Last of the wild project, Version 3 (LWP-3): 2009 human footprint, 2018 release[R/OL]. New York: NASA Socioeconomic Data and Applications Center (SEDAC)[2023−10−12]. https://doi.org/10.7927/H4H9938Z.
|
[23] |
Venter O, Sanderson E W, Magrach A, et al. Global terrestrial human footprint maps for 1993 and 2009[J]. Scientific Data, 2016, 3(1): 1−10.
|
[24] |
Warren D L, Glor R E, Turelli M. ENMTools: a toolbox for comparative studies of environmental niche models[J]. Ecography, 2010, 33: 607−611. doi: 10.1111/j.1600-0587.2009.06142.x
|
[25] |
Gacesa R, Kurilshikov A. Vich Vila A, et al. Environmental factors shaping the gut microbiome in a Dutch population[J]. Nature, 2022, 604: 732−739. doi: 10.1038/s41586-022-04567-7
|
[26] |
张茜. 祁连圆柏的分子谱系地理学研究[D]. 兰州: 兰州大学, 2008.
Zhang Q. Molecular phylogeography of Juniperus przewalskii (Cupressaceae) [D]. Lanzhou: Lanzhou University, 2008.
|
[27] |
Yang X Q, Kushwaha S P S, Saran S, et al. MaxEnt modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills[J]. Ecological Engineering, 2013, 51: 83−87. doi: 10.1016/j.ecoleng.2012.12.004
|
[28] |
Zhang M G, Zhou Z K, Chen W Y, et al. Major declines of woody plant species ranges under climate change in Yunnan, China[J]. Diversity and Distributions, 2014, 20(4): 405−415. doi: 10.1111/ddi.12165
|
[29] |
Phillips S J, Anderson R P, Dudík M, et al. Opening the black box: an open-source release of MaxEnt[J]. Ecography, 2017, 40(7): 887−893. doi: 10.1111/ecog.03049
|
[30] |
Shcheglovitova M, Anderson R P. Estimating optimal complexity for ecological niche models: a jackknife approach for species with small sample sizes[J]. Ecological Modelling, 2013, 269: 9−17. doi: 10.1016/j.ecolmodel.2013.08.011
|
[31] |
Phillips S J. A brief tutorial on MaxEnt [EB/OL][2020−12−04]. http://biodiversityinformatics.amnh.org/open_source/maxent/.
|
[32] |
Rong Z L, Zhao C Y, Liu J J, et al. Modeling the effect of climate change on the potential distribution of Qinghai spruce (Picea crassifolia Kom.) in Qilian Mountains[J/OL]. Forests, 2019, 10: 62[2023−01−23]. https://doi.org/10.3390/f10010062.
|
[33] |
张伟萍, 胡云云, 李智华, 等. 气候变化情景下祁连圆柏在青海省的适宜分布区预测[J]. 应用生态学报, 2021, 32(7): 2514−2524.
Zhang W P, Hu Y Y, Li Z H, et al. Predicting suitable distribution areas of Juniperus przewalskii in Qinghai Province under climate change scenarios[J]. Chinese Journal of Applied Ecology, 2021, 32(7): 2514−2524.
|
[34] |
Warren D L, Seifert S N. Ecological niche modeling in MaxEnt: the importance of model complexity and the performance of model selection criteria[J]. Ecological Applications, 2011, 21(2): 335−342. doi: 10.1890/10-1171.1
|
[35] |
Warren D L, Wright A N, Seifert S N, et al. Incorporating model complexity and spatial sampling bias into ecological niche models of climate change risks faced by 90 California vertebrate species of concern[J]. Diversity and Distributions, 2014, 20: 334−343. doi: 10.1111/ddi.12160
|
[36] |
中国科学院中国植物志编辑委员会. 中国植物志[M]. 北京: 科学出版社, 1978: 375.
Editorial Committee of Flora of China, Chinese Academy of Sciences. Flora of China[M]. Beijing: Science Press, 1978: 375.
|
[37] |
中国科学院植物研究所系统与进化植物学国家重点实验室. iPlant 植物智−植物物种信息系统[EB/OL][2019−11−23]. http://www.iplant.cn/info/%E7%A5%81%E8%BF%9E%E5%9C%86%E6%9F%8F?t=f.
Institute of Botany, the Chinese Academy of Sciences. State Key Laboratory of Systematic and Evolutionary Botany (LSEB). iPlant[EB/OL][2019−11−23]. http://www.iplant.cn/info/%E7%A5%81%E8%BF%9E%E5%9C%86%E6%9F%8F?t=f.
|
[38] |
朱耿平, 刘强, 高玉葆. 提高生态位模型转移能力来模拟入侵物种的潜在分布[J]. 生物多样性, 2014, 22(2): 223−230. doi: 10.3724/SP.J.1003.2014.08178
Zhu G P, Liu Q, Gao Y B. Improving ecological niche model transferability to predict the potential distribution of invasive exotic species[J]. Biodiversity Science, 2014, 22(2): 223−230. doi: 10.3724/SP.J.1003.2014.08178
|
[39] |
Muscarella R, Galante P J, Soley-Guardia M. ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for MAXENT ecological niche models[J]. Methods in Ecology and Evolution, 2014, 5: 1198−1205. doi: 10.1111/2041-210X.12261
|
[40] |
Leeuw J D. Information theory and an extension of the maximum likelihood principle by Hirotogu Akaike[J]. Department of Statistics Ucla, 1994, 87: 284−292.
|
[41] |
叶利奇, 张伟皓, 叶兴状, 等. 基于MaxEnt模型的珙桐潜在分布预测及其重要影响因子分析[J]. 四川农业大学学报, 2021, 39(5): 604−612.
Ye L Q, Zhang W H, Ye X Z, et al. Prediction of potential distribution area and analysis of dominant environmental variables of Davidia involucrate based on MaxEnt[J]. Journal of Sichuan Agricultural University, 2021, 39(5): 604−612.
|
[42] |
张明珠, 叶兴状, 刘益鹏, 等. 基于SSPs 预测格木在中国的潜在地理分布[J]. 北京林业大学学报, 2022, 44(4): 54−65.
Zhang M Z, Ye X Z, Liu Y P, et al. Predicting the potential geographical distribution of Erythrophleum fordii in China based on SSPs[J]. Journal of Beijing Forestry University, 2022, 44(4): 54−65.
|
[43] |
王艳君, 高泰, 石娟. 基于MaxEnt模型对舞毒蛾全球适生区的预测及分析[J]. 北京林业大学学报, 2021, 43(9): 59−69.
Wang Y J, Gao T, Shi J. Prediction and analysis of the global suitability of Lymantria dispar based on MaxEnt[J]. Journal of Beijing Forestry University, 2021, 43(9): 59−69.
|
[44] |
郭飞龙, 徐刚标, 卢孟柱, 等. 基于MaxEnt模型分析胡杨潜在适宜分布区[J]. 林业科学, 2020, 56(5): 184−192.
Guo F L, Xu G B, Lu M Z, et al. 2020. Prediction of potential suitable distribution areas for Populus euphratica using the MaxEnt model[J]. Scientia Silvae Sinicae, 2020, 56(5): 184−192.
|
[45] |
邵雪梅, 黄磊, 刘洪滨, 等. 树轮记录的青海德令哈地区千年降水变化[J]. 中国科学: D 辑, 2004, 34(2): 145−153.
Shao X M, Huang L, Liu H B, et al. Reconstruction of precipitation variation from tree rings in recent 1 000 years in Delingha, Qinghai[J]. Science in China: Series D, 2004, 34(2): 145−153.
|
[46] |
刘录三, 邵雪梅, 梁尔源. 祁连山中部祁连圆柏生长与更新方式的树轮记录[J]. 地理研究, 2006, 25(1): 53−61.
Liu L S, Shao X M, Liang E Y, et al. Tree ring records of Qilian Juniper’s growth and regeneration patterns in the central Qilian Mountains[J]. Geographical Research, 2006, 25(1): 53−61.
|
[47] |
刘贤德, 王清忠, 孟好军. 祁连圆柏[M]. 北京: 中国科学技术出版社, 2006: 1−149.
Liu X D, Wang Q Z, Meng H J. Qilian Juniper (Sabina przewalskii Kom.)[M]. Beijing: China Science and Technology Press, 2006: 1−149.
|
[48] |
刘喜梅, 李海朝. 不同海拔高度祁连圆柏叶中挥发性成分的比较[J]. 北京林业大学学报, 2014, 36(1): 126−131.
Liu X M, Li H C. Comparison of volatile components of Sabina przewalskii in different altitudes[J]. Journal of Beijing Forestry University, 2014, 36(1): 126−131.
|
[49] |
戎战磊. 气候变化对祁连山优势物种分布和植被格局的影响[D]. 兰州: 兰州大学, 2019.
Rong Z L. Effects of climate change on distribution of dominant species and pattern of vegetation in Qilian Mountains[M]. Lanzhou: Lanzhou University, 2019.
|
[50] |
Burke A. Classification and ordination of plant communities of the Naukluft Mountains, Namibia[J]. Journal of Vegetation Science, 2001, 12(1): 53−60. doi: 10.1111/j.1654-1103.2001.tb02616.x
|
[51] |
Gaston K J. Global patterns in biodiversity[J]. Nature, 2000, 405: 220−227. doi: 10.1038/35012228
|
[52] |
唐志红, 尉秋实, 刘虎俊, 等. 祁连山东段高寒植被群落特征及其与地形气候因子关系研究[J]. 生态学报, 2020, 40(1): 223−232.
Tang Z H, Yu Q S, Liu H J, et al. Characteristics of alpine vegetation community and its relationship to topographic climate factors in the eastern Qilian Mountain[J]. Acta Ecologica Sinica, 2020, 40(1): 223−232.
|
[53] |
陈文年, 吴宁, 罗鹏. 氓江上游祁连山圆柏群落结构研究[J]. 应用生态学报, 2005, 16(2): 197−202.
Chen W N, Wu N, Luo P. Sabina przewalskii community structure in the upper reaches of Minjiang River[J]. Chinese Journal of Applied Ecology, 2005, 16(2): 197−202.
|
[54] |
高静, 单鸣秋, 丁安伟, 等. 柏科药用植物研究进展[J]. 中药材, 2008, 31(11): 1765−1769.
Gao J, Shan M Q, Ding A W, et al. Advances in medicinal plants of Cupressaceae[J]. Journal of Chinese Medicinal Materials, 2008, 31(11): 1765−1769.
|
[55] |
文陇英, 陈拓, 张满效, 等. 不同生境下祁连圆柏叶片色素和稳定碳同位素组成的变化[J]. 冰川冻土, 2010, 32(4): 823−828.
Wen L Y, Chen T, Zhang M X, et al. Variations of pigments and stable-carbonisotope ratios in Sabina przewalskii under different environments[J]. Journal of Glaciology and Geocryology, 2010, 32(4): 823−828.
|
[56] |
Sillero N. What does ecological modelling model? a proposed classification of ecological niche models based on their underlying methods[J]. Ecological Modelling, 2011, 222(8): 1343−1346. doi: 10.1016/j.ecolmodel.2011.01.018
|
[57] |
Guo Y L, Li X, Zhao Z F, et al. Modeling the distribution of Populus euphratica in the Heihe River Basin, an inland river basin in an arid region of China[J]. Science China: Earth Sciences, 2018, 61(11): 1669−1684. doi: 10.1007/s11430-017-9241-2
|
[1] | Zhang Shuning, Bao Wenquan, Ao Dun, Zhao Guanghua, Wang Lin, Wuyun Tana, Bai Yu’e, Han Qimuge. Potential distribution area and niche change of Prunus mira under context of climate change[J]. Journal of Beijing Forestry University, 2024, 46(9): 45-56. DOI: 10.12171/j.1000-1522.20230014 |
[2] | Xu Jingya, Liu Tian, Zang Guozhang, Zheng Yiqi. Prediction of suitable areas of Eremochloa ophiuroides in China under different climate scenarios based on MaxEnt model[J]. Journal of Beijing Forestry University, 2024, 46(3): 91-102. DOI: 10.12171/j.1000-1522.20230022 |
[3] | Zhou Yuting, Ge Xuezhen, Zou Ya, Guo Siwei, Wang Tao, Tao Jing, Zong Shixiang. Prediction of the potential geographical distribution of Hylurgus ligniperda at the global scale and in China using the Maxent model[J]. Journal of Beijing Forestry University, 2022, 44(11): 90-99. DOI: 10.12171/j.1000-1522.20210345 |
[4] | Liu Jiaqi, Wei Guangkuo, Shi Changqing, Zhao Tingning, Qian Yunkai. Suitable distribution area of drought-resistant afforestation tree species in north China based on MaxEnt model[J]. Journal of Beijing Forestry University, 2022, 44(7): 63-77. DOI: 10.12171/j.1000-1522.20210527 |
[5] | Liu Wei, Zhao Runan, Sheng Qianqian, Geng Xingmin, Zhu Zunling. Geographical distribution and potential distribution area prediction of Paeonia jishanensis in China[J]. Journal of Beijing Forestry University, 2021, 43(12): 83-92. DOI: 10.12171/j.1000-1522.20200360 |
[6] | Tang Yan, Zhao Runan, Ren Gang, Cao Fuliang, Zhu Zunling. Prediction of potential distribution of Lycium chinense based on MaxEnt model and analysis of its important influencing factors[J]. Journal of Beijing Forestry University, 2021, 43(6): 23-32. DOI: 10.12171/j.1000-1522.20200103 |
[7] | Lü Rudan, He Jian, Liu Huijie, Yao Min, Cheng Jin, Xie Lei. Distribution and niche modeling analysis of Clematis pinnata[J]. Journal of Beijing Forestry University, 2019, 41(2): 70-79. DOI: 10.13332/j.1000-1522.20180189 |
[8] | ZHANG Chun-hua, HE Ju, SUN Yong-yu, LI Kun. Distributional change in suitable areas for Toona sureni based on MaxEnt model[J]. Journal of Beijing Forestry University, 2017, 39(8): 33-41. DOI: 10.13332/j.1000-1522.20170002 |
[9] | ZHANG Chao, CHEN Lei, TIAN Cheng-ming, LI Tao, WANG Rong, YANG Qi-qing. Predicting the distribution of dwarf mistletoe (Arceuthobium sichuanense) with GARP and MaxEnt models[J]. Journal of Beijing Forestry University, 2016, 38(5): 23-32. DOI: 10.13332/j.1000-1522.20150516 |
[10] | WANG Lei-hong, YANG Jun-xian, ZHENG Yu-hong, TANG Geng-guo. Modelling the geographic distribution of Malus baccata[J]. Journal of Beijing Forestry University, 2011, 33(3): 70-74. |