• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhang Bingbin, Zhang Linlin, Yu Minghan, Ding Guodong, Gao Guanglei. Evaluation of drought resistant ability and physiological mechanism in drought resistance of Cyperus esculentus var. sativus [J]. Journal of Beijing Forestry University, 2022, 44(4): 107-115. DOI: 10.12171/j.1000-1522.20210378
Citation: Zhang Bingbin, Zhang Linlin, Yu Minghan, Ding Guodong, Gao Guanglei. Evaluation of drought resistant ability and physiological mechanism in drought resistance of Cyperus esculentus var. sativus [J]. Journal of Beijing Forestry University, 2022, 44(4): 107-115. DOI: 10.12171/j.1000-1522.20210378

Evaluation of drought resistant ability and physiological mechanism in drought resistance of Cyperus esculentus var. sativus

More Information
  • Received Date: September 24, 2021
  • Revised Date: November 03, 2021
  • Available Online: March 16, 2022
  • Published Date: April 24, 2022
  •   Objective  Studying the physiological response and drought resistance mechanism of Cyperus esculentus var. sativus under different drought degrees can provide reference for the introduction and cultivation of C. esculentus var. sativus in northern sandy area.
      Method  C. esculentus var. sativus, a burgeoning oil crop in arid and semi-arid sandy area, was studied in a pot water control experiment with 4 different drought treatments of control check, light stressed group, moderate stressed group, and severe stressed group (the soil moisture contents were over 12%, 8% to 11%, 5% to 8% and less than 5%, respectively). The morphological structures, physiological and biochemical characteristics of C. esculentus var. sativus were tested, and then the drought resistant ability of C. esculentus var. sativus was evaluated by gray related degree analysis method and membership function method.
      Result  (1) With drought degree increasing, the crown breadth, tuber number descended significantly. The physiological and biochemical indexes such as net photosynthetic rate and stomatal conductance increased under the light drought and then decreased with drought degree increasing, indicating that light stress could enhance physiological activity. (2) Bio-chemistry mechanisms of C. esculentus var. sativus such as osmotic adjustment, antioxidant enzyme system and hormone secretion got activated to resist drought, and they played different roles in the drought stress. The responses of roots and leaves to drought stress were varied. (3) The activities of APX antioxidant enzymes reached peak values under the light in leaves, while under the severe drought stress in roots, the GB content of roots increased with the aggravation of drought stress, while it reached peak value under the light drought in leaves. (4) Comprehensive drought resistance value of C. esculentus var. sativus was 0.468, indicating moderate drought resistant ability.
      Conclusion  The study suggests that the optimum soil mass moisture content for C. esculentus var. sativus is 8% − 12%, C. esculentus var. sativus can be introduced into semi-arid sandy areas with the support of irrigation facility.
  • [1]
    王凯悦, 陈芳泉, 黄五星. 植物干旱胁迫响应机制研究进展[J]. 中国农业科技导报, 2019, 21(2): 19−25.

    Wang K Y, Chen F Q, Huang W X. Research advance on drought stress response mechanism in plants[J]. Journal of Agricultural Science and Technology, 2019, 21(2): 19−25.
    [2]
    张海燕, 段文学, 解备涛, 等. 不同时期干旱胁迫对甘薯内源激素的影响及其与块根产量的关系[J]. 作物学报, 2018, 44(1): 126−136. doi: 10.3724/SP.J.1006.2018.00126

    Zhang H Y, Duan W X, Xie B T, et al. Effects of drought stress at different growth stages on endogenous hormones and its relationship with storage root yield in sweetpotato[J]. Acta Agronomica Sinica, 2018, 44(1): 126−136. doi: 10.3724/SP.J.1006.2018.00126
    [3]
    许爱云, 曹兵, 谢云. 干旱风沙区煤炭基地12种草本植物对干旱胁迫的生理生态响应及抗旱性评价[J]. 草业学报, 2020, 29(10): 22−34. doi: 10.11686/cyxb2020114

    Xu A Y, Cao B, Xie Y. Physiological-ecological responses of twelve herbaceous plant species under drought stress and evaluation pf their drought resistance when planted in coal producting basis in arid windy and sandy areas[J]. Acta Prataculturae Sinica, 2020, 29(10): 22−34. doi: 10.11686/cyxb2020114
    [4]
    田小霞, 许明爽, 郑明利, 等. 黄花草木樨苗期抗旱性鉴定及抗旱指标筛选[J]. 干旱区资源与环境, 2021, 35(10): 120−127.

    Tian X X, Xu M S, Zheng M L, et al. Drought resistance identification and drought resistance indices screening for Melilotus officinalis resources at seedling stage[J]. Journal of Arid Landresources and Environment, 2021, 35(10): 120−127.
    [5]
    Ozturk M, Turkyilmaz U B, GarcíaCaparrós P, et al. Osmoregulation and its actions during the drought stress in plants[J].  Physiologia Plantarum, 2020, 172(2): 1321−1335.
    [6]
    Mehdi R, Mojtaba K, Mojtaba M. Evaluation of tea (Camellia sinensis L.) biochemical traits in normal and drought stress conditions to identify drought tolerant clones[J]. Physiology and Molecular Biology of Plants, 2019, 25(1): 59−69. doi: 10.1007/s12298-018-0564-x
    [7]
    安玉艳, 梁宗锁. 植物应对干旱胁迫的阶段性策略[J]. 应用生态学报, 2012, 23(10): 2907−2915.

    An Y Y, Liang Z S. Staged strategy of plants in response to drought stress[J]. Chinese Journal of Applied Ecology, 2012, 23(10): 2907−2915.
    [8]
    黄文莉, 马杰, 江敏, 等. 干旱胁迫对马铃薯抗旱生理影响及相关基因的表达[J]. 分子植物育种, 2021, 19(21): 7213−7221.

    Huang W L, Ma J, Jiang M, et al. Changes in drought resistance physiology and related gene expression of potato upon drought stresses[J]. Molecular Plant Breeding, 2021, 19(21): 7213−7221.
    [9]
    黄明华, 王学华, 庞震宁. 油莎豆的研究现状及展望[J]. 作物研究, 2013, 27(3): 293−294. doi: 10.3969/j.issn.1001-5280.2013.03.22

    Huang M H, Wang X H, Pang Z N. Research status and prospect of Cyperus esculentus L.[J]. Crop Research, 2013, 27(3): 293−294. doi: 10.3969/j.issn.1001-5280.2013.03.22
    [10]
    朱俊岭, 师茜, 王小红, 等. 不同水分处理条件对油莎豆叶片生理指标及块茎品质的影响[J]. 西南农业学报, 2016, 29(6): 1276−1280.

    Zhu J L, Shi Q, Wang X H, et al. Effects of different moisture on leaf physiological regulation substances content and quality of Cyperus esculentus L.[J]. Southwest China Journal of Agricultural Sciences, 2016, 29(6): 1276−1280.
    [11]
    艾雪莹, 吴琦, 周宇飞, 等. 干旱−复水条件下氮素对高粱光合特性及抗氧化代谢的影响[J]. 干旱地区农业研究, 2019, 37(5): 99−105. doi: 10.7606/j.issn.1000-7601.2019.05.15

    Ai X Y, Wu Q, Zhou Y F, et al. Effects of nitrogen on photosynthesis and antioxidant enzyme activities of sorghum under drought stress and re-watering[J]. Agricultural Research in the Arid Areas, 2019, 37(5): 99−105. doi: 10.7606/j.issn.1000-7601.2019.05.15
    [12]
    李海洋, 李爱学, 王成, 等. 盐胁迫对苗期向日葵内源激素含量的影响[J]. 干旱地区农业研究, 2018, 36(6): 92−97. doi: 10.7606/j.issn.1000-7601.2018.06.14

    Li H Y, Li A X, Wang C, et al. Effects of salt stress on endogenous hormone contents in sunflower seedlings[J]. Agricultural Research in the Arid Areas, 2018, 36(6): 92−97. doi: 10.7606/j.issn.1000-7601.2018.06.14
    [13]
    陈文荣, 曾玮玮, 李云霞, 等. 高丛蓝莓对干旱胁迫的生理响应及其抗旱性综合评价[J]. 园艺学报, 2012, 39(4): 637−646.

    Chen W R, Zeng W W, Li Y X, et al. The physiological responds of high bush blueberry to drought stress and the comprehensive evaluation on their drought resistance capacity[J]. Acta Horticulturae Sinica, 2012, 39(4): 637−646.
    [14]
    欧巧明, 叶春雷, 李进京, 等. 胡麻种质资源成株期抗旱性综合评价及其指标筛选[J]. 干旱区研究, 2017, 34(5): 1083−1092.

    Ou Q M, Ye C L, Li J J, et al. Comprehensive valuation and screening of drought resistance of flax germplasms[J]. Arid Zone Research, 2017, 34(5): 1083−1092.
    [15]
    李江艳, 张鲜花, 袁小强. 鸭茅种质资源苗期抗旱指标筛选及抗旱评价[J/OL]. 中国农业科技导报, 2021[2021−12−10]. https://doi.org/10.13304/j.nykjdb.2020.1080.

    Li J Y, Zhang X H, Yuan X Q. Drought resistance index screening and drought resistance evaluation of Dactylis glomerata germplasm resources during seedling[J/OL]. Journal of Agricultural Science and Technology, 2021[2021−12−10]. https://doi.org/10.13304/j.nykjdb.2020.1080.
    [16]
    徐银萍, 潘永东, 刘强德, 等. 大麦种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2020, 46(3): 448−461. doi: 10.3724/SP.J.1006.2020.91031

    Xu Y P, Pan Y D, Liu Q D, et al. Drought resistance identification and drought resistance indexes screening of barley resources at mature period[J]. Acta Agronomica Sinica, 2020, 46(3): 448−461. doi: 10.3724/SP.J.1006.2020.91031
    [17]
    王利界, 周智彬, 常青, 等. 盐旱交叉胁迫对灰胡杨(Populus pruinosa)幼苗生长和生理生化特性的影响[J]. 生态学报, 2018, 38(19): 7026−7033.

    Wang L J, Zhou Z B, Chang Q, et al. Growth, physiological and biochemical characteristics of Populus pruinosa seedlings under salt-drought stress[J]. Acta Ecologica Sinica, 2018, 38(19): 7026−7033.
    [18]
    Zhang K, Liu Y J, Luo L, et al. Root traits of peanut cultivars with different drought resistant under drought stress at flowering and pegging phase[J]. Acta Agriculturae Scandinavica, 2021, 71(5): 363−376.
    [19]
    邢钟毓, 李连国, 郭金丽, 等. 干旱胁迫对蒙原欧李光合特性及叶肉细胞超微结构的影响[J]. 干旱地区农业研究, 2019, 37(6): 37−42. doi: 10.7606/j.issn.1000-7601.2019.06.06

    Xing Z Y, Li L G, Guo J L, et al. Effects of drought stress on photosynthetic characteristics and ultrastructure of mesophyll cells of Mengyuan Cerasus humilis[J]. Agricultural Research in the Arid Areas, 2019, 37(6): 37−42. doi: 10.7606/j.issn.1000-7601.2019.06.06
    [20]
    裴斌, 张光灿, 张淑勇, 等. 土壤干旱胁迫对沙棘叶片光合作用和抗氧化酶活性的影响[J]. 生态学报, 2013, 33(5): 1386−1396. doi: 10.5846/stxb201209281358

    Pei B, Zhang G C, Zhang S Y, et al. Effects of soil drought stress on photosynthetic characteristics and antioxidant enzyme activities in Hippophae rhamnoides Linn. seedlings[J]. Acta Ecologica Sinica, 2013, 33(5): 1386−1396. doi: 10.5846/stxb201209281358
    [21]
    王佳庭, 于明含, 杨海龙, 等. 乌兰布和沙漠典型植物群落土壤风蚀可蚀性研究[J]. 干旱区地理, 2020, 43(6): 1543−1550.

    Wang J T, Yu M H, Yang H L, et al. Soil erodibility of typical plant communities in Ulan Buh Desert[J]. Arid Land Geography, 2020, 43(6): 1543−1550.
    [22]
    季杨, 张新全, 彭燕, 等. 干旱胁迫对鸭茅根、叶保护酶活性、渗透物质含量及膜质过氧化作用的影响[J]. 草业学报, 2014, 23(3): 144−151. doi: 10.11686/cyxb20140316

    Ji Y, Zhang X Q, Peng Y, et al. Effects of drought stress on protective enzyme activities, osmotic substance content and membrane peroxidation in roots and leaves of Dactylis glomerata[J]. Acta Prataculturae Sinica, 2014, 23(3): 144−151. doi: 10.11686/cyxb20140316
    [23]
    李久道, 金华, 朴世领, 等. 羊草根、叶在干旱和盐胁迫下的生理反应[J]. 草业科学, 2017, 34(8): 1705−1710. doi: 10.11829/j.issn.1001-0629.2016-0528

    Li J D, Jin H, Piao S L, et al. Physiological response of leaves and roots of Leymus chinensis under drought and salt stress[J]. Pratacultural Science, 2017, 34(8): 1705−1710. doi: 10.11829/j.issn.1001-0629.2016-0528
    [24]
    王凯, 郭晶晶, 王冬琦, 等. 樟子松和油松根叶对春季干旱胁迫的响应[J]. 生态学杂志, 2015, 34(11): 3132−3138.

    Wang K, Guo J J, Wang D Q, et al. Responses of roots and needles of Pinus sylvestris var. mongolica and Pinus tabuliformis to spring drought stress[J]. Chinese Journal of Ecology, 2015, 34(11): 3132−3138.
    [25]
    Xiao F, Zhao Y, Wang X R, et al. Transcriptome analysis of needle and root of Pinus massoniana in response to continuous drought stress[J]. Plants, 2021, 10(4): 769−782. doi: 10.3390/plants10040769
    [26]
    Gholmohammadi M, Sofalian O, Taheri M, et al. Effect of drought stress on physiological traits andantioxidant activities in some olive cultivars[J]. Cellular and Molecular Biology, 2019, 65(7): 46−54. doi: 10.14715/cmb/2019.65.7.9
    [27]
    Anil K, Varun K, Arvind K D, et al. Chickpea glutaredoxin (CaGrx) gene mitigates drought and salinity stress by modulating the physiological performance and antioxidant defense mechanisms[J]. Physiology and Molecular Biology of Plants, 2021, 27(5): 1−22.
    [28]
    Hsu P, Dubeaux G, Takahashi Y, et al. Signaling mechanisms in abscisic acid-mediated stomatal closure[J]. The Plant Journal, 2020, 105(2): 307−321.
    [29]
    刘晓, 陈修德, 程宁, 等. 外源脱落酸处理的干旱胁迫下山桃叶片的转录组差异表达分析[J]. 植物生理学报, 2020, 56(12): 2755−2766.

    Liu X, Chen X D, Cheng N, et al. Transcriptome difference analysis of David peach (Amygdalus davidiana) leaves in response to drought stress with exogenous abscisic acid[J]. Plant Physiology Journal, 2020, 56(12): 2755−2766.
    [30]
    张鑫, 孔祥, 李勇, 等. 外源ABA对干旱条件下小麦冠层温度及光合同化物积累与分配的调控效应[J]. 麦类作物学报, 2019, 39(9): 1080−1094. doi: 10.7606/j.issn.1009-1041.2019.09.009

    Zhang X, Kong X, Li Y, et al. Effect of exogenous ABA on the canopy temperature and accumulation and distribution of photoassimilates in wheat under drought conditions[J]. Journal of Triticeae Crops, 2019, 39(9): 1080−1094. doi: 10.7606/j.issn.1009-1041.2019.09.009
    [31]
    Yudina L, Sukhova E, Sherstneva O, et al. Exogenous abscisic acid can influence photosynthetic processes in peas through a decrease in activity of H+-ATP-ase in the plasma membrane[J]. Biology, 2020, 9(10): 324−324. doi: 10.3390/biology9100324
    [32]
    许喆, 任健, 田英, 等. 外源ABA对干旱胁迫下多年生黑麦草光合特性的影响[J]. 草地学报, 2019, 27(5): 1243−1249.

    Xu Z, Ren J, Tian Y, et al. Effects of exogenous ABA on photosynthetic characteristics of Lolium perenne under drought stress[J]. Acta Agrestia Sinica, 2019, 27(5): 1243−1249.
    [33]
    孙哲, 范维娟, 刘桂玲, 等. 干旱胁迫下外源ABA对甘薯苗期叶片光合特性及相关生理指标的影响[J]. 植物生理学报, 2017, 53(5): 873−880.

    Sun Z, Fan W J, Liu G L, et al. Effects of exogenous ABA on leaf photosynthetic characteristics and associated physiological indexes of sweetpotato (lpomoea batatas) seedlings under drought stress[J]. Plant Physiology Journal, 2017, 53(5): 873−880.
    [34]
    刘芯伶, 彭玉婷, 王云梅, 等. 外源褪黑素和脱落酸对干旱胁迫下猕猴桃幼苗生理特性的影响[J]. 干旱地区农业研究, 2021, 39(4): 95−101. doi: 10.7606/j.issn.1000-7601.2021.04.12

    Liu X L, Peng Y T, Wang Y M, et al. Effects of exogenous melatonin and abscisic acid on physiological characteristics in kiwifruit seedlings under drought stress[J]. Agricultural Research in the Arid Areas, 2021, 39(4): 95−101. doi: 10.7606/j.issn.1000-7601.2021.04.12
    [35]
    王向东, 甄胜虎, 张凤琴. 甜糯玉米全生育期抗旱性鉴定指标的筛选与评价[J]. 玉米科学, 2021, 29(5): 41−49.

    Wang X D, Zhen S H, Zhang F Q. Estimating and screening with drought resistance indexes of sweet glutinous corn in growth stage[J]. Journal of Maize Sciences, 2021, 29(5): 41−49.
    [36]
    汪灿, 周棱波, 张国兵, 等. 薏苡种质资源成株期抗旱性鉴定及抗旱指标筛选[J]. 作物学报, 2017, 43(9): 1381−1394. doi: 10.3724/SP.J.1006.2017.01381

    Wang C, Zhou L B, Zhang G B, et al. Identification and indices screening of drought resistance at adult plant stage in Job’s tears germplasm resources[J]. Acta Agronomica Sinica, 2017, 43(9): 1381−1394. doi: 10.3724/SP.J.1006.2017.01381
    [37]
    王兴荣, 李玥, 张彦军, 等. 青稞种质资源成株期抗旱性鉴定及抗旱指标筛选[J/OL]. 作物学报, 2021[2021−12−13]. http://kns.cnki.net/kcms/detail/11.1809.S.20211014.2304.004.html.

    Wang X R, Li Y, Zhang Y J, et al. Drought resistance identification and drought resistance indexes screening of Tibetan hulless barley resources at adult stage[J/OL]. Acta Agronomica Sinica, 2021[2021−12−13]. http://kns.cnki.net/kcms/detail/11.1809.S.20211014.2304.004.html.
    [38]
    谢小玉, 张霞, 张兵. 油菜苗期抗旱性评价及抗旱相关指标变化分析[J]. 中国农业科学, 2013, 46(3): 476−485. doi: 10.3864/j.issn.0578-1752.2013.03.004

    Xie X Y, Zhang X, Zhang B. Evaluation of drought resistance and analysis of variation of relevant parameters at seedling stage of rapeseed (Brassica napus L.)[J]. Scientia Agricultura Sinica, 2013, 46(3): 476−485. doi: 10.3864/j.issn.0578-1752.2013.03.004
  • Related Articles

    [1]Hu Yaofang, Li Ao, Yin Jiahui, Wang Yuancheng, Zou Junzhu, Ju Guansheng, Liu Junxiang, Sun Zhenyuan. Transcriptome based ABA mediated dehydration response of Salix matsudana branches[J]. Journal of Beijing Forestry University, 2025, 47(3): 19-27. DOI: 10.12171/j.1000-1522.20240103
    [2]Ma Siyuan, Yao Jun, Li Jing, An Keyue, Zhao Rui, Zhao Nan, Zhou Xiaoyang, Chen Shaoliang. Populus euphratica PeMAX2 regulating drought tolerance in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2024, 46(6): 106-117. DOI: 10.12171/j.1000-1522.20220494
    [3]LIU Chun-hao, LIANG Nan-song, YU Lei, ZHAO Xing-tang, LIU Ying, SUN Shuang, WANG Zi-qing, ZHAN Ya-guang. Cloning, analysing and homologous expression of TCP4 transcription factor under abiotic stress and hormone signal in Fraxinus mandschurica[J]. Journal of Beijing Forestry University, 2017, 39(6): 22-31. DOI: 10.13332/j.1000-1522.20160359
    [4]CHEN Li-pei, YANG Bo, SHEN Yong-bao. Endogenous hormone content of endosperm of Pinus tabuliformis seeds during initial germinating stage[J]. Journal of Beijing Forestry University, 2012, 34(6): 30-33.
    [5]XU Bo-chao, ZHOU Zhi-qiang2, LI Wei, LIU Tong. Physiological and photosynthetic response to different water conditions of Taxus cuspidate seedlings[J]. Journal of Beijing Forestry University, 2012, 34(4): 73-78.
    [6]WANG Xiao-ling, ZHAO Zhong, QUAN Jin-e. Effects of planting time on endogenous hormones and oxidase in tetraploid Robinia pseudoacacia softwood cuttings.[J]. Journal of Beijing Forestry University, 2011, 33(6): 102-106.
    [7]LIN Xia, ZHENG Jian, CHEN Qiu-xia, KONG Qiang, YE Yan-ling. Effects of NaCl stress on photosynthesis and antioxidant activity in Ficus concinna var. subsessilis[J]. Journal of Beijing Forestry University, 2011, 33(4): 70-74.
    [8]LI Jin-ke, CHEN Hua-jun, CHEN Shao-liang. Quantitative analysis of jasmonic acids, indole-3-acetic acid and abscisic acid in plant tissues by GC-MS[J]. Journal of Beijing Forestry University, 2010, 32(5): 143-148.
    [9]KONG De-zheng, JIN Dan-dan, HE Song-lin, YANG Qiu-sheng, LIU Yi-ping.. Anatomy and changes in endogenous hormones during flower bud differentiation in Nelumbo nucifera[J]. Journal of Beijing Forestry University, 2009, 31(3): 42-45.
    [10]REN Qin, YANG Li, HU Yong-jian, CHEN Hua-jun, JIN You-ju, LI Zhen-yu. Change of ABA content inside the damaged Pinus massoniana needles[J]. Journal of Beijing Forestry University, 2006, 28(5): 99-101.
  • Cited by

    Periodical cited type(5)

    1. 张晴晴,杜艺,张玉林,张志浩,张波,鲁艳,曾凡江. 块茎形成期不同灌溉量对油莎豆产量和品质的影响. 草地学报. 2024(11): 3636-3645 .
    2. 邵鹏,宋小双,廖诗贤,钟斯文,王铮,王宇曦,马玲,邓勋. 深色有隔内生真菌对干旱胁迫下樟子松生长及抗旱性的影响. 中南林业科技大学学报. 2023(09): 15-28 .
    3. 李金珠,张学昆,徐劲松,谢伶俐,许本波. H_2O_2处理修复老化油莎豆的生理机制. 草业科学. 2023(09): 2309-2319 .
    4. 孙蕊,钟鹏,刘泽东,高海娟,王若丁,李伟,尤海洋,宋雪莹,王晓龙. 非生物胁迫下油莎豆抗逆性研究进展. 饲料博览. 2023(05): 32-35 .
    5. 刘佳遥,程艳,魏尊苗,龙威,王靓,牟忠生. 外源激素对干旱胁迫下油莎豆生长、产量及生理特性的影响. 河南农业科学. 2022(11): 42-49 .

    Other cited types(8)

Catalog

    Article views (753) PDF downloads (67) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return