• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Ma Siyuan, Yao Jun, Li Jing, An Keyue, Zhao Rui, Zhao Nan, Zhou Xiaoyang, Chen Shaoliang. Populus euphratica PeMAX2 regulating drought tolerance in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2024, 46(6): 106-117. DOI: 10.12171/j.1000-1522.20220494
Citation: Ma Siyuan, Yao Jun, Li Jing, An Keyue, Zhao Rui, Zhao Nan, Zhou Xiaoyang, Chen Shaoliang. Populus euphratica PeMAX2 regulating drought tolerance in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2024, 46(6): 106-117. DOI: 10.12171/j.1000-1522.20220494

Populus euphratica PeMAX2 regulating drought tolerance in Arabidopsis thaliana

More Information
  • Received Date: December 04, 2022
  • Revised Date: February 20, 2023
  • Accepted Date: June 05, 2024
  • Available Online: June 06, 2024
  • Objective 

    MAX2 plays an important role in inhibiting plant branching and regulating strigolactone signaling pathway. MAX2 is also involved in multi-phytohormone interactions and in plant response to biotic and abiotic stresses. It has been shown that overexpression of Populus euphratica PeMAX2 can improve ionic homeostasis and the salt tolerance in transgenic plants of Arabidopsis thaliana. However, little is known about the function of PeMAX2 in drought tolerance. The objective of this study is to explore the mechanism of PeMAX2 in regulating drought tolerance of Arabidopsis thaliana.

    Method 

    P. euphratica PeMAX2 was overexpressed in A. thaliana, and the physiological and molecular mechanism underlying the osmotic and drought tolerance of transgenic plants was investigated in this study.

    Result 

    (1) The expression of PeMAX2 gene was up-regulated in P. euphratica leaves under long-term of drought stress. (2) After mannitol treatment, the seed germination rate and root length of A. thaliana overexpressing PeMAX2 were significantly higher than those of wild type and max2 mutant. The cell membrane was less damaged in PeMAX2-transgenic plants under osmotic stress compared with WT and max2. The increase of superoxide dismutase, peroxidase and catalase activities and the transcription levels of their encoding genes were higher in transgenic lines than in WT and max2 mutant under osmotic stress. As a result, the ability to regulate H2O2 was increased in root cells of transgenic lines. (3) A 10-d of soil drought decreased the chlorophyll content in all tested lines, and a more pronounced reduction was observed in WT and max2 mutant. Under drought stress, the maximum photochemical efficiency of PSⅡ, relative electron transport rate and actual quantum yield of photosynthesis were less inhibited in PeMAX2-overexpressed plants than in WT and max2. Meanwhile, transgenic plants had higher net photosynthetic rate and stomatal conductance under drought treatment, as compared with WT and mutant plants. This indicated that overexpression of PeMAX2 improved the photosynthetic capacity of transgenic plants under drought conditions. The recovery of chlorophyll content, fluorescence and photosynthesis of WT and mutant were significantly lower than that of transgenic lines after soil rehydration.

    Conclusion 

    Overexpression of P. euphratica PeMAX2 improves the drought tolerance of A. thaliana. This is mainly due to the increased ability to scavenge reactive oxygen species in transgenic plants. Consequently, the oxidative damage to cell membrane and the drought inhibition of photosynthesis are alleviated in PeMAX2-transgenic plants under water stress.

  • [1]
    Toh S, Holbrook-Smith D, Stogios P J, et al. Structure-function analysis identifies highly sensitive strigolactone receptors in Striga[J]. Science, 2015, 350: 203−207. doi: 10.1126/science.aac9476
    [2]
    Li B W, Gao S, Yang Z M, et al. The F-box E3 ubiquitin ligase AtSDR is involved in salt and drought stress responses in Arabidopsis[J]. Gene, 2021, 809: 146011.
    [3]
    Carbonnel S, Torabi S, Gutjahr C. MAX2-independent transcriptional responses to rac-GR24 in Lotus japonicus roots[J]. Plant Signaling & Behavior, 2021, 16(1): 1840852.
    [4]
    Yu H C, Wu J, Xu N F, et al. Roles of F-box proteins in plant hormone responses[J]. Acta BiochimBiophys Sin (Shanghai), 2007, 39(12): 915−922. doi: 10.1111/j.1745-7270.2007.00358.x
    [5]
    Wang L, Wang B, Yu H, et al. Transcriptional regulation of strigolactone signalling in Arabidopsis[J]. Nature, 2020, 583: 277−281. doi: 10.1038/s41586-020-2382-x
    [6]
    Stirnberg P, van de Sande K, Leyser H M O, et al. MAX1 and MAX2 control shoot lateral branching in Arabidopsis[J]. Development, 2002, 129(5): 1131−1141. doi: 10.1242/dev.129.5.1131
    [7]
    Bennett T, Sieberer T, Willett B, et al. The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport[J]. Current Biology, 2006, 16(6): 553−563. doi: 10.1016/j.cub.2006.01.058
    [8]
    Hayward A, Stirnberg P, Beveridge C, et al. Interactions between auxin and strigolactone in shoot branching control[J]. Plant Physiology, 2009, 151(1): 400−412. doi: 10.1104/pp.109.137646
    [9]
    Stirnberg P, Furner I J, Leyser H M O, et al. MAX2 participates in an SCF complex which acts locally at the node to suppress shoot branching[J]. The Plant Journal, 2007, 50(1): 80−94. doi: 10.1111/j.1365-313X.2007.03032.x
    [10]
    王闵霞, 彭鹏, 龙海馨, 等. 独脚金内酯途径相关基因的研究进展[J]. 分子植物育种, 2014, 12(3): 603−609.

    Wang M X, Peng P, Long H X, et al. Progress in cloning of strigolactone-related genes[J]. Molecular Plant Breeding, 2014, 12(3): 603−609.
    [11]
    Waters M T, Scaffidi A, Flematti G R, et al. The origins and mechanisms of karrikin signaling[J]. Current Opinion in Plant Biology, 2013, 16(5): 667−673. doi: 10.1016/j.pbi.2013.07.005
    [12]
    Bunsick M, Toh S, Wong C, et al. SMAX1-dependent seed germination bypasses GA signalling in Arabidopsis and Striga[J]. Nature Plants, 2020, 6(6): 646−652. doi: 10.1038/s41477-020-0653-z
    [13]
    Bursch K, Niemann E T, Nelson D C, et al. Karrikins control seedling photomorphogenesis and anthocyanin biosynthesis through a HY5-BBX transcriptional module[J]. Plant Journal, 2021, 107(5): 1346−1362. doi: 10.1111/tpj.15383
    [14]
    Zhao L L, Fang J J, Xing J, et al. Identification and functional analysis of two cotton orthologs of MAX2 which control shoot lateral branching[J]. Plant Molecular Biology Reporter, 2017, 35(5): 480−490. doi: 10.1007/s11105-017-1040-4
    [15]
    Al-Babili S, Bouwmeester H J. Strigolactones, a novel carotenoid-derived plant hormone[J]. Annual Review of Plant Biology, 2015, 66(1): 161−186. doi: 10.1146/annurev-arplant-043014-114759
    [16]
    Swarbreck S M, Guerringue Y, Matthus E, et al. Impairment in karrikin but not strigolactone sensing enhances root skewing in Arabidopsis thaliana[J]. The Plant Journal, 2019, 98(4): 607−621. doi: 10.1111/tpj.14233
    [17]
    Osnato M. Not too short and not too long: SMAX1 optimizes hypocotyl length at warmer temperature[J]. The Plant Cell, 2022, 34(7): 2580−2581. doi: 10.1093/plcell/koac125
    [18]
    Yao C, Finlayson S A. Abscisic acid is a general negative regulator of Arabidopsis axillary bud growth[J]. Plant Physiology, 2015, 169(1): 611−626. doi: 10.1104/pp.15.00682
    [19]
    Li W Q, Nguyen K H, Ha C V, et al. Crosstalk between the cytokinin and MAX2 signaling pathways in growth and callus formation of Arabidopsis thaliana[J]. Biochemical and Biophysical Research Communications, 2019, 511(2): 300−306. doi: 10.1016/j.bbrc.2019.02.038
    [20]
    Bu Q Y, Lü T X, Shen H, et al. Regulation of drought tolerance by the F-box protein MAX2 in Arabidopsis[J]. Plant Physiology, 2014, 164(1): 424−439. doi: 10.1104/pp.113.226837
    [21]
    Li W Q, Nguyen K H, Watanabe Y, et al. OaMAX2 of Orobanche aegyptiaca and Arabidopsis AtMAX2 share conserved functions in both development and drought responses[J]. Biochemical and Biophysical Research Communications, 2016, 478(2): 521−526. doi: 10.1016/j.bbrc.2016.07.065
    [22]
    An J P, Li R, Qu F J, et al. Apple F-box protein MdMAX2 regulates plant photomorphogenesis and stress response[J]. Frontiers in Plant Science, 2016, 7: 1685.
    [23]
    Fu X J, Wang J, Shangguan T W, et al. SMXLs regulate seed germination under salinity and drought stress in soybean[J]. Plant Growth Regulation, 2022, 96(3): 397−408. doi: 10.1007/s10725-021-00786-6
    [24]
    侯思源, 张会龙, 尧俊, 等. 胡杨PeREM6.5调控拟南芥水分胁迫耐受机制[J]. 北京林业大学学报, 2022, 44(9): 40−51. doi: 10.12171/j.1000-1522.20210195

    Hou S Y, Zhang H L, Yao J, et al. Populus euphratica PeREM6.5 regulating tolerance mechanism to water stress in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2022, 44(9): 40−51. doi: 10.12171/j.1000-1522.20210195
    [25]
    武霞, 张一南, 赵楠, 等. 过表达胡杨PeAnn1负调控拟南芥的抗旱性[J]. 北京林业大学学报, 2020, 42(6): 14−25. doi: 10.12171/j.1000-1522.20200031

    Wu X, Zhang Y N, Zhao N, et al. Overexpression of PeAnn1 from Populus euphratica negatively regulates drought resistance in transgenic Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2020, 42(6): 14−25. doi: 10.12171/j.1000-1522.20200031
    [26]
    Ge X L, Zhang L, Du J J, et al. Transcriptome analysis of Populus euphratica under salt treatment and PeERF1 gene enhances salt tolerance in transgenic Populus alba × Populus glandulosa[J]. International Journal of Molecular Sciences, 2022, 23(7): 3727. doi: 10.3390/ijms23073727
    [27]
    尧俊. 胡杨转录调节因子PeWRKY1调控离子平衡分子网络研究[D]. 北京: 北京林业大学, 2020.

    Yao J. Populus euphratica transcription factor PeWRKY1 mediates signaling network conferring ionic homeostasis under salt stress[D]. Beijing: Beijing Forestry University, 2020.
    [28]
    Abbasi G H, Ijaz M, Akhtar J, et al. Profiling of anti-oxidative enzymes and lipid peroxidation in leaves of salt tolerant and salt sensitive maize hybrids under NaCl and Cd stress[J]. Sains Malaysiana, 2016, 45(2): 177−184.
    [29]
    Aalifar M, Aliniaeifard S, Arab M, et al. Blue light improves vase life of carnation cut flowers through its effect on the antioxidant defense system[J]. Frontiers in Plant Science, 2020, 11: 511. doi: 10.3389/fpls.2020.00511
    [30]
    Jia M X, Jiang X R, Xu J, et al. CAT and MDH improve the germination and alleviate the oxidative stress of cryopreserved Paeonia and Magnolia pollen[J]. Acta Physiologiae Plantarum, 2018, 40(2): 1−10.
    [31]
    Du G Y, Li X J, Wang J H, et al. Discrepancy in photosynthetic responses of the red alga Pyropia yezoensis to dehydration stresses under exposure to desiccation, high salinity, and high mannitol concentration[J]. Marine Life Science & Technology, 2021, 4(1): 10−17.
    [32]
    Ha C V, Leyva-Gonzalez M A, Osakabe Y, et al. Positive regulatory role of strigolactone in plant responses to drought and salt stress[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(2): 851−856.
    [33]
    Liu J W, He H Z, Vitali M, et al. Osmotic stress represses strigolactone biosynthesis in Lotus japonicus roots: exploring the interaction between strigolactones and ABA under abiotic stress[J]. Planta, 2015, 241(6): 1435−1451. doi: 10.1007/s00425-015-2266-8
    [34]
    任广悦. 黄瓜SLs信号转导基因CsMAX2的克隆及抗逆功能验证[D]. 哈尔滨: 哈尔滨师范大学, 2020.

    Ren G Y. Cloning of SLs signal transduction gene CsMAX2 in Cucumis sativus L. and verification of stress resistance[D]. Harbin: Harbin Normal University, 2020.
    [35]
    吕天晓. 拟南芥MAX2蛋白介导ABA及抗旱反应的分子机制[D]. 长春: 中国科学院东北地理与农业生态研究所, 2015.

    Lü T X. Functional analysis of MAX2 in regulating ABA signaling and drought stress response in Arabidopsis[D]. Changchun: Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 2015.
    [36]
    Rezayian M, Niknam V, Ebrahimzadeh H. Penconazole and calcium ameliorate drought stress in canola by upregulating the antioxidative enzymes[J]. Functional Plant Biology, 2020, 47(9): 825−839. doi: 10.1071/FP19341
  • Cited by

    Periodical cited type(18)

    1. 舒翰俊,范顺祥,姜亚东,王立群,李经纬,宇振荣,刘云慧. 内蒙古耕地景观生态风险评价及生态修复分区. 地球科学与环境学报. 2023(04): 895-906 .
    2. 袁成军,熊康宁,容丽,翁应芳. 喀斯特石漠化生态恢复中的生物多样性研究进展. 地球与环境. 2021(03): 336-345 .
    3. 高敏,王勇,高洁,王家录,毛泳. 喀斯特地区退耕还林工程下生态系统服务变化与关系分析. 水土保持研究. 2020(02): 276-283 .
    4. 李珊珊,李阳兵,王萌萌,罗光杰. 基于微空间单元的岩溶峡谷区土地利用结构演变. 自然资源学报. 2020(04): 908-924 .
    5. 武文昊. 基于遥感数据的常州市土地利用变化及景观格局分析. 辽宁林业科技. 2020(06): 28-31+34 .
    6. 李连强. 我国退耕还林(草)研究趋势及热点分析. 辽宁林业科技. 2020(06): 41-47 .
    7. 王琦,王晓娜,牟惟勇,路斌. 黄石市土地利用景观格局变化研究. 中国农学通报. 2019(09): 81-85 .
    8. 王萌萌,李阳兵,李珊珊. 岩溶槽谷区耕地涨落时空特征与驱动机制. 自然资源学报. 2019(03): 510-525 .
    9. 刘月梅,白小安,杜锦华,刘广亮. 基于土地利用变化的延安市退耕还林工程绩效评价. 现代农业科技. 2018(16): 152-156 .
    10. 宁应之,杨永强,董玟含,张惠茹,马继阳. 土壤纤毛虫群落对不同退还模式生态恢复的响应. 生态学报. 2018(10): 3628-3638 .
    11. 代婷婷,许铭,徐雁南. 乡村聚落时空分布特征及驱动因素分析——以安徽黟县为例. 南京林业大学学报(自然科学版). 2018(05): 155-162 .
    12. 李海燕,张弘强,曾星雨,曲艺,罗春雨,崔玲,高玉慧. 三江平原土地利用动态变化分析. 国土与自然资源研究. 2018(06): 27-29 .
    13. 吕国屏,廖承锐,徐雁南,张婷,李海东. 基于CA-Markov模型的喀斯特地区县域生态系统服务价值动态模拟. 南京林业大学学报(自然科学版). 2017(05): 49-56 .
    14. 赵敏敏,周立华,王思源. 生态政策对库布齐沙漠土地利用格局及生态系统服务价值的影响. 水土保持研究. 2017(02): 252-258 .
    15. 韩磊,朱会利,刘钊. 延安市退耕还林前后土地利用动态变化分析. 西北师范大学学报(自然科学版). 2017(05): 101-108 .
    16. 萨如拉,银山,包慧娟,常月明. 基于土地利用的奈曼旗退耕还林(草)工程定量评价. 赤峰学院学报(自然科学版). 2016(06): 127-128 .
    17. 马慧慧,于海洋,曾春伟,罗玲,牛峰明. 泽州猕猴自然保护区土地利用/覆被及景观格局变化研究. 测绘工程. 2016(10): 31-37 .
    18. 杨民英,李玉辉,庞丹波,俞筱押. 基于GIS和RS的喀斯特水源地景观格局动态变化研究——以大春河小流域为例. 四川农业大学学报. 2016(02): 227-233 .

    Other cited types(17)

Catalog

    Article views (318) PDF downloads (40) Cited by(35)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return