Citation: | Xie Shuwen, Jin Guangze, Liu Zhili. Variations and trade-offs of twig-leaf traits for Betula platyphylla with different diameter classes in Xiaoxing’an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2023, 45(12): 32-40. DOI: 10.12171/j.1000-1522.20210463 |
Plants can use resources more efficiently by adjusting their own traits. Exploring the variation and correlation between twig and leaf traits of plants with different diameter classes is of great significance for understanding the intraspecific variation of plant functional traits and the resource acquisition strategies of plants.
In Liangshui National Nature Reserve of Heilongjiang Province of northeastern China, three diameter classes of Betula platyphylla were selected (including small tree, middle tree and large tree). The twig cross-sectional area, individual leaf area, total leaf area, total leaf dry mass, twig dry mass and volume-based leafing intensity were measured in different diameter classes. One-way analysis of variance was used to test whether there were significant differences in twig-leaf traits among varied diameter classes. The method of standardized main axis estimation was used to test whether the diameter class had an effect on the correlation between the twig and leaf traits.
With the increase of diameter class, twig cross-sectional area showed an upward trend, individual leaf area and total leaf area showed a downward trend, but there was no significant difference in total leaf dry mass, twig dry mass, volume-based leafing intensity. The twig cross-sectional area was significantly positively correlated with individual leaf area, total leaf area and total leaf dry mass, but was significantly negatively correlated with volume-based leafing intensity, among them, the cross-sectional area of small trees and large trees had an isokinetic growth relationship of close to 1 with the total leaf area and total leaf dry mass, while the medium tree had an allometric growth relationship close to 1.5; individual leaf area exhibited significantly negative correlations with volume-based leafing intensity, showing an allometric relationship; the diameter class had a significant effect on the slope or intercept of the correlations between twig-leaf traits.
Within the same community, the difference in branch and leaf traits among different diameter classes of B. platyphylla is its own resource acquisition strategy, and the branch and leaf traits undergo collaborative changes in order to obtain effective resources.
[1] |
张晶, 赵成章, 雷蕾,等. 薰衣草枝叶性状关系的个体大小依赖[J]. 生态学杂志, 2018, 37(8): 2277−2284. doi: 10.13292/j.1000-4890.201808.039
Zhang J, Zhao C Z, Lei L, et al. Individual size dependence of the relationship of twig and leaf traits of Lavandula angustifolia[J]. Chinese Journal of Ecology, 2018, 37(8): 2277−2284. doi: 10.13292/j.1000-4890.201808.039
|
[2] |
尹凤娟, 王明琦, 金光泽,等. 红松不同生活史阶段的枝叶权衡[J]. 林业科学, 2021, 57(4): 54−62.
Yin F J, Wang M Q, Jin G Z, et al. Trade-off between twig and leaf of Pinus koraiensis at different life history stages[J]. Scientia Silvae Sinicae, 2021, 57(4): 54−62.
|
[3] |
杨士梭, 温仲明, 苗连朋,等. 黄土丘陵区植物功能性状对微地形变化的响应[J]. 应用生态学报, 2014, 25(12): 3413−3419. doi: 10.13287/j.1001-9332.2014.0192
Yang S S, Wen Z M, Miao L P, et al. Responses of plant functional traits to micro-topographical changes in hilly and gully region of the Loess Plateau, China[J]. Chinese Journal of Applied Ecology, 2014, 25(12): 3413−3419. doi: 10.13287/j.1001-9332.2014.0192
|
[4] |
Diaz S, Cabido M, Zak M, et al. Plant functional traits, ecosystem structure and land-use history along a climatic gradient in central-western Argentina[J]. Journal of Vegetation Science, 1999, 10(5): 651−660. doi: 10.2307/3237080
|
[5] |
Osada N. Crown development in a pioneer tree, Rhus trichocarpa, in relation to the structure and growth of individual branches[J]. New Phytologist, 2006, 172(4): 667−678. doi: 10.1111/j.1469-8137.2006.01857.x
|
[6] |
Kawai K, Okada N. Coordination of leaf and stem traits in 25 species of Fagaceae from three biomes of East Asia[J]. Botany, 2019, 97(7): 391−403. doi: 10.1139/cjb-2019-0010
|
[7] |
White P S. Corner’s rules in eastern deciduous trees: allometry and its implications for the adaptive architecture of trees[J]. Bulletin of the Torrey Botanical Club, 1983, 110(2): 203−212.
|
[8] |
White P S. Evidence that temperate east North American evergreen woody plants follow Corner’s rules[J]. New Phytologist, 1983, 95(1): 139−145.
|
[9] |
Niklas K J, Enquist B J. Canonical rules for plant organ biomass partitioning and annual allocation[J]. American Journal of Botany, 2002, 89(5): 812−819. doi: 10.3732/ajb.89.5.812
|
[10] |
Yan E R, Wang X H, Chang S X, et al. Scaling relationships among twig size, leaf size and leafing intensity in a successional series of subtropical forests[J]. Tree Physiology, 2013, 33(6): 609−617. doi: 10.1093/treephys/tpt042
|
[11] |
Hacke U G, Sperry J S, Wheeler J K, et al. Scaling of angiosperm xylem structure with safety and efficiency[J]. Tree Physiology, 2006, 26(6): 689−701. doi: 10.1093/treephys/26.6.689
|
[12] |
Wright I J, Falster D S, Pickup M, et al. Cross-species patterns in the coordination between leaf and stem traits, and their implications for plant hydraulics[J]. Physiologia Plantarum, 2006, 127(3): 445−456. doi: 10.1111/j.1399-3054.2006.00699.x
|
[13] |
Hao G Y, Hoffmann W A, Scholz F G, et al. Stem and leaf hydraulics of congeneric tree species from adjacent tropical savanna and forest ecosystems[J]. Oecologia, 2008, 155(3): 405−415. doi: 10.1007/s00442-007-0918-5
|
[14] |
Meinzer F C, Woodruff D R, Domec J C, et al. Coordination of leaf and stem water transport properties in tropical forest trees[J]. Oecologia, 2008, 156(1): 31−41. doi: 10.1007/s00442-008-0974-5
|
[15] |
杨继鸿, 李亚楠, 卜海燕,等. 青藏高原东缘常见阔叶木本植物叶片性状对环境因子的响应[J]. 植物生态学报, 2019, 43(10): 863−876. doi: 10.17521/cjpe.2019.0174
Yang J H, Li Y N, Bu H Y, et al. Response of leaf traits of common broad-leaved woody plants to environmental factors on the eastern Qinghai-Xizang Plateau[J]. Chinese Journal of Plant Ecology, 2019, 43(10): 863−876. doi: 10.17521/cjpe.2019.0174
|
[16] |
魏圆慧, 梁文召, 韩路,等. 胡杨叶功能性状特征及其对地下水埋深的响应[J]. 生态学报, 2021, 41(13): 5368−5376.
Wei Y H, Liang W Z, Han L, et al. Leaf functional traits of Populus euphratica and its response to groundwater depths in Tarim extremely arid area[J]. Acta Ecologica Sinica, 2021, 41(13): 5368−5376.
|
[17] |
Martin A R, Thomas S C. Size-dependent changes in leaf and wood chemical traits in two Caribbean rainforest trees[J]. Tree Physiology, 2013, 33(12): 1338−1353. doi: 10.1093/treephys/tpt085
|
[18] |
Marshall J D, Monserud R A. Foliage height influences specific leaf area of three conifer species[J]. Canadian Journal of Forest Research, 2003, 33(1): 164−170. doi: 10.1139/x02-158
|
[19] |
Carlucci M B, Debastiani V J, Valério D P, et al. Between- and within-species trait variability and the assembly of sapling communities in forest patches[J]. Journal of Vegetation Science, 2015, 26(1): 21−31. doi: 10.1111/jvs.12223
|
[20] |
Westoby M, Falster D S, Moles A T, et al. Plant ecological strategies: some leading dimensions of variation between species[J]. Annual Review of Ecology and Systematics, 2002, 33(1): 125−159. doi: 10.1146/annurev.ecolsys.33.010802.150452
|
[21] |
龙嘉翼, 赵宇萌, 孔祥琦,等. 观赏灌木小枝和叶性状在林下庇荫环境中的权衡关系[J]. 生态学报, 2018, 38(22): 8022−8030.
Long J Y, Zhao Y M, Kong X Q, et al. Trade-offs between twig and leaf traits of ornamental shrubs grown in shade[J]. Acta Ecologica Sinica, 2018, 38(22): 8022−8030.
|
[22] |
Yang F, Xie L H, Huang Q Y, et al. Twig biomass allocation of Betula platyphylla in different habitats in Wudalianchi Volcano, northeast China[J]. Open Life Sciences, 2021, 16(1): 758−765. doi: 10.1515/biol-2021-0078
|
[23] |
Yang D M, Niklas K J, Xiang S, et al. Size-dependent leaf area ratio in plant twigs: implication for leaf size optimization[J]. Annals of Botany, 2010, 105(1): 71−77. doi: 10.1093/aob/mcp262
|
[24] |
孙蒙柯, 程林, 王满堂,等. 武夷山常绿阔叶林木本植物小枝生物量分配[J]. 生态学杂志, 2018, 37(6): 1815−1823.
Sun M K, Cheng L, Wang M T, et al. Twig biomass allocation of woody species in evergreen broad-leaf forest, Wuyi Mountain[J]. Chinese Journal of Ecology, 2018, 37(6): 1815−1823.
|
[25] |
Niklas K J, Enquist B J. On the vegetative biomass partitioning of seed plant leaves, stems, and roots[J]. Tree Physiology, 2002, 159(5): 482−497.
|
[26] |
Liu Z L, Hikosaka K, Li F R, et al. Variations in leaf economics spectrum traits for an evergreen coniferous species: tree size dominates over environment factors[J]. Functional Ecology, 2020, 34(2): 458−467. doi: 10.1111/1365-2435.13498
|
[27] |
于青含, 金光泽, 刘志理. 植株大小、枝龄和环境共同驱动红松枝性状的变异[J]. 植物生态学报, 2020, 44(9): 939−950. doi: 10.17521/cjpe.2020.0173
Yu Q H, Jin G Z, Liu Z L. Plant size, branch age and environment factors co-drive variations of branch traits of Pinus koraiensis[J]. Chinese Journal of Plant Ecology, 2020, 44(9): 939−950. doi: 10.17521/cjpe.2020.0173
|
[28] |
Valladares F, Wright J S, Lasso E, et al. Plastic phenotypic responses to light of 16 congeneric shrubs from a Panamanian rainforest[J]. Ecology, 2000, 81(7): 1925−1936. doi: 10.1890/0012-9658(2000)081[1925:PPRTLO]2.0.CO;2
|
[29] |
Nouvellon Y, Laclau J P, Epron D, et al. Within-stand and periodal variations of specific leaf area in a clonal eucalyptus plantation in the Republic of Congo[J]. Forest Ecology and Management, 2010, 259(9): 1796−1807. doi: 10.1016/j.foreco.2009.05.023
|
[30] |
Kenzo T, Inoue Y, Yoshimura M, et al. Height-related changes in leaf photosynthetic traits in diverse bornean tropical rain forest trees[J]. Oecologia, 2015, 177(1): 191−202. doi: 10.1007/s00442-014-3126-0
|
[31] |
张林, 罗天祥. 植物叶寿命及其相关叶性状的生态学研究进展[J]. 植物生态学报, 2004, 28(6): 844−852. doi: 10.17521/cjpe.2004.0110
Zhang L, Luo T X. Advances in ecological studies on leaf lifespan and associated leaf traits[J]. Chinese Journal of Plant Ecology, 2004, 28(6): 844−852. doi: 10.17521/cjpe.2004.0110
|
[32] |
Parkhurst D F, Loucks O L. Optimal leaf size in relation to environment[J]. Journal of Ecology, 1972, 60(2): 505−537. doi: 10.2307/2258359
|
[33] |
Givnish T J, Vermeij G J. Sizes and shapes of liane leaves[J]. The American Naturalist, 1976, 110(975): 743−778. doi: 10.1086/283101
|
[34] |
卢艺苗, 王满堂, 陈晓萍,等. 江西常绿阔叶林木本植物不同冠层高度当年生小枝茎构型对叶生物量的影响[J]. 应用生态学报, 2019, 30(11): 3653−3661. doi: 10.13287/j.1001-9332.201911.001
Lu Y M, Wang M T, Chen X P, et al. Effects of the current-year shoot stem configuration on leaf biomass in different canopy heights of woody plants in evergreen broad-leaved forest in Jiangxi Province[J]. Chinese Journal of Applied Ecology, 2019, 30(11): 3653−3661. doi: 10.13287/j.1001-9332.201911.001
|
[35] |
Alméras T, Costes E, Salles J C. Identification of biomechanical actors involved in stem shape variability between pricot tree varieties[J]. Annals of Botany, 2004, 93(4): 455−468. doi: 10.1093/aob/mch054
|
[36] |
Harvey P, Pagel M. The comparative method in evolutionary biology[M]. Oxford: Oxford University Press, 1991.
|
[37] |
Warton D I, Weber N C. Common slope tests for bivariate errors-in-variables models[J]. Biometrical Journal, 2002, 44(2): 161−174. doi: 10.1002/1521-4036(200203)44:2<161::AID-BIMJ161>3.0.CO;2-N
|
[38] |
Sultan S E. Plant developmental responses to the environment: eco-devo insights[J]. Current Opinion in Plant Biology, 2010, 13(1): 96−101. doi: 10.1016/j.pbi.2009.09.021
|
[39] |
Westoby M, Wright I J. The leaf size-twig size spectrum and its relationship to other important spectra of variation among species[J]. Oecologia, 2003, 135(4): 621−628. doi: 10.1007/s00442-003-1231-6
|
[40] |
严昌荣, 韩兴国, 陈灵芝. 北京山区落叶阔叶林优势种叶片特点及其生理生态特性[J]. 生态学报, 2000, 20(1): 54−61.
Yan C R, Han X G, Chen L Z. The relationship between the ecophysiological feature and leaf characteristics of some woody plants in Beijing Mountain zone[J]. Acta Ecologgica Sinica, 2000, 20(1): 54−61.
|
[41] |
Givnish T J. Ecological aspects of plant morphology: leaf form in relation to environment[J]. Acta Biotheoretica, 1978, 27(6): 83−142.
|
[42] |
Scoffoni C, Rawls M, Mckown A, et al. Decline of leaf hydraulic conductance with dehydration: relationship to leaf size and venation architecture[J]. Plant Physiology, 2011, 156(2): 832−843. doi: 10.1104/pp.111.173856
|
[43] |
Cornelissen J H C, Lavorel S, Garnier E, et al. A handbook of protocols for standardized and easy measurement of plant functional traits worldwide[J]. Australian Journal of Botany, 2003, 51(4): 335−380. doi: 10.1071/BT02124
|
[44] |
Rozendaal D M A, Hurtado V H, Poorter L. Plasticity in leaf traits of 38 tropical tree species in response to light: relationships with light demand and adult stature[J]. Functional Ecology, 2006, 20(2): 207−216. doi: 10.1111/j.1365-2435.2006.01105.x
|
[45] |
史元春, 赵成章, 宋清华,等. 兰州北山刺槐枝叶性状的坡向差异性[J]. 植物生态学报, 2015, 39(4): 362−370. doi: 10.17521/cjpe.2015.0035
Shi Y C, Zhao C Z, Song Q H, et al. Slope-related variations in twig and leaf traits of Robinia pseudoacacia in the northern mountains of Lanzhou[J]. Chinese Journal of Plant Ecology, 2015, 39(4): 362−370. doi: 10.17521/cjpe.2015.0035
|
[46] |
李永华, 卢琦, 吴波,等. 干旱区叶片形态特征与植物响应和适应的关系[J]. 植物生态学报, 2012, 36(1): 88−98. doi: 10.3724/SP.J.1258.2012.00088
Li Y H, Lu Q, Wu B, et al. A review of leaf morphology plasticity linked to plant response and adaptation characteristics in arid ecosystems[J]. Chinese Journal of Plant Ecology, 2012, 36(1): 88−98. doi: 10.3724/SP.J.1258.2012.00088
|
[47] |
Shinozaki K, Yoda K, Hozumi K, et al. A quantitative analysis of plant form-the pipe model theory (Ⅰ): basic analysis[J]. Japanese Journal of Ecology, 1964, 14(3): 97−105.
|
[48] |
Niklas K J. Plant biomechanics: an engineering approach to plant form and function[M]. Chicago: University of Chicago Press, 1992.
|
[49] |
Brouat C, Gibernau M, Amsellem L, et al. Corner’s rules revisited: ontogenetic and interspecific patterns in leaf-stem allometry[J]. The New Phytologist, 1998, 139(3): 459−470. doi: 10.1046/j.1469-8137.1998.00209.x
|
[50] |
Sun S C, Jin D M, Shi P L. The leaf size-twig size spectrum of temperate woody species along an altitudinal gradient: an invariant allometric scaling relationship[J]. Annals of Botany, 2006, 97(1): 97−107. doi: 10.1093/aob/mcj004
|
[51] |
Falster D S, Westoby M. Plant height and evolutionary games[J]. Trends in Ecology and Evolution, 2003, 18(7): 337−343. doi: 10.1016/S0169-5347(03)00061-2
|
[52] |
高景, 王金牛, 徐波,等. 不同雪被厚度下典型高山草地早春植物叶片性状、株高及生物量分配的研究[J]. 植物生态学报, 2016, 40(8): 775−787. doi: 10.17521/cjpe.2015.0288
Gao J, Wang J N, Xu B, et al. Plant leaf traits, height and biomass partitioning in typical ephemerals under different levels of snow cover thickness in an alpine meadow[J]. Chinese Journal of Plant Ecology, 2016, 40(8): 775−787. doi: 10.17521/cjpe.2015.0288
|
[53] |
Kleiman D, Aarssen L W. The leaf size/number trade-off in trees[J]. Journal of Ecology, 2007, 95(2): 376−382. doi: 10.1111/j.1365-2745.2006.01205.x
|
[54] |
Poorter L, Rozendaal D M A, Bongers F, et al. Functional recovery of secondary tropical forests[J]. Proceedings of the National Academy of Sciences, 2021, 118(49): 1−12.
|
[55] |
Niklas K J, Speck T. Evolutionary trends in safety factors against wind-induced stem failure[J]. American Journal of Botany, 2001, 88(7): 1266−1278. doi: 10.2307/3558338
|
[56] |
Huang W, Reddy G V P, Li Y, et al. Increase in absolute leaf water content tends to keep pace with that of leaf dry mass-evidence from bamboo plants[J]. Symmetry, 2020, 12(8): 1345.
|
[57] |
Wright I J, Westoby M, Reich P B. Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span[J]. Journal of Ecology, 2002, 90(3): 534−543. doi: 10.1046/j.1365-2745.2002.00689.x
|
[58] |
Li T, Deng J M, Wang G X, et al. Isometric scaling relationship between leaf number and size within current-year shoots of woody species across contrasting habitats[J]. Polish Journal of Ecology, 2009, 57(4): 659−667.
|