• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhang Yue, Tian Qing, Huang Rong. Responses of typical plant functional traits among summer-flowering tree species in heterogeneous city habitats in Lanzhou City of northwestern China[J]. Journal of Beijing Forestry University, 2023, 45(10): 90-99. DOI: 10.12171/j.1000-1522.20210476
Citation: Zhang Yue, Tian Qing, Huang Rong. Responses of typical plant functional traits among summer-flowering tree species in heterogeneous city habitats in Lanzhou City of northwestern China[J]. Journal of Beijing Forestry University, 2023, 45(10): 90-99. DOI: 10.12171/j.1000-1522.20210476

Responses of typical plant functional traits among summer-flowering tree species in heterogeneous city habitats in Lanzhou City of northwestern China

More Information
  • Received Date: November 17, 2021
  • Revised Date: September 13, 2022
  • Accepted Date: September 27, 2023
  • Available Online: October 07, 2023
  • Objective 

    This study probed into the differences and associated features of functional traits among summer-flowering tree species growing in heterogeneous urban habitats, then recognized which factors influenced the functional traits’ performances.

    Method 

    Five summer-flowering tree species, i.e Sophora japonica, Koelreuteria paniculata, Sambucus williamsii, Aesculus chinensis and Sorbaria kirilowii, which were widely applied in three typical road habitats and three residential habitats in Lanzhou urban area of northwestern China, were selected to sample and measure their leaf functional traits in summer, 2020. Also, these sampled trees were marked to determine their reproductive functional traits during the full-bloomimg and full-fruiting period. Correlation analysis was applied to make a thorough inquiry of the relationship between environmental factors and tree species’ functional traits, and path analysis was used to explore the correlations between leaf functional traits and various reproductive functional traits.

    Result 

    Compared with residential habitat, species growing in road habitat showed a lower value of flowering number, inflorescence length, inflorescence axis diameter and seed setting rate, while leaf dry mass per area, leaf dry matter content, leaf tissue density and leaf thickness increased. In addition, leaf area reduced and duration of green foliage was shorter. According to correlation analysis, there existed the significant or the most significant correlations between part of leaf functional traits and reproductive functional traits. Correlations between soil conditions, most inflorescence traits and leaf functional traits were significant or the most significant. As for major atmospheric pollutants, the correlations between O3 concentrations, most inflorescence traits and leaf traits were significant or the most significant. Path analysis indicated that the performance of each reproductive functional trait was affected by multiple leaf functional traits. In road habitat, leaf dry mass per area, leaf thickness and leaf tissue density had a significant effect on reproductive functional traits, while in residential habitat, the effects were not significant, thus summer-flowering tree species’ strategies to resource utilization were different in various urban habitats.

    Conclusion 

    Five summer-flowering tree species differently change their functional trait performance in road and residential habitats in urban areas. Differences of soil conditions and atmospheric pollutant levels in two habitats are closely related to tree species’ functional trait performances. Among five summer-flowering tree species, leaf functional traits could togetherly affect reproductive functional traits, strategies to resource utilization among tree species are not identical in various urban habitats.

  • [1]
    张明丽, 崔易翀, 达良俊. 杭州不同城市生境杂草群落分布格局及成因[J]. 华东师范大学学报(自然科学版), 2021, 2021(2): 120−131.

    Zhang M L, Cui Y C, Da L J. Distribution and causes of ruderal communities in different urban habitats of Hangzhou[J]. Journal of East China Normal University (Natural Science), 2021, 2021(2): 120−131.
    [2]
    Song G M, Wang J, Han T T, et al. Changes in plant functional traits and their relationships with environmental factors along an urban-rural gradient in Guangzhou, China[J]. Ecological Indicators, 2019, 106: 105558. doi: 10.1016/j.ecolind.2019.105558
    [3]
    赵园园, 陈洪醒, 陈红, 等. 重庆市6种园林植物功能性状对城乡生境梯度的响应[J]. 生态学杂志, 2019, 38(8): 2346−2353.

    Zhao Y Y, Chen H X, Chen H, et al. Changes of functional traits of six common garden plant species across an urban-rural gradient of Chongqing[J]. Chinese Journal of Ecology, 2019, 38(8): 2346−2353.
    [4]
    Zhang S R, Ma K P, Chen L Z. Tempo sparial variations in stomatal conductance, aperture and density of Ligustrum sinense acclimated to different light environments[J]. Acta Botanical Sinica, 2002, 44(10): 1225−1232.
    [5]
    邱东, 吴甘霖, 刘玲, 等. 城市香樟叶片干物质含量与比叶面积的时空变异[J]. 云南大学学报(自然科学版), 2019, 41(3): 609−618.

    Qiu D, Wu G L, Liu L, et al. Spatial-temporal variation of leaf dry matter content and specific leaf area of Cinnamomum camphora in urban area[J]. Journal of Yunnan University (Natural Sciences Edition), 2019, 41(3): 609−618.
    [6]
    Rai P K. Impacts of particulate matter pollution on plants: implications for environmental biomonitoring[J]. Ecotoxicology and Environmental Safety, 2020, 129: 120−136.
    [7]
    陈珊, 张兴, 曲彦婷, 等. 石湖园林植物LES性状对水分环境响应的研究[J]. 东北农业大学学报, 2021, 52(6): 34−44.

    Chen S, Zhang X, Qu Y T, et al. Study on response of leaf economic spectrum traits of Shihu Garden plants to water environment[J]. Journal of Northeast University, 2021, 52(6): 34−44.
    [8]
    贺鹏程, 叶清. 基于植物功能性状的生态学研究进展: 从个体水平到全球尺度[J]. 热带亚热带植物学报, 2019, 27(5): 523−533.

    He P C, Ye Q. Plant functional traits: from individual plant to global scale[J]. Journal of Tropical and Subtropical Botany, 2019, 27(5): 523−533.
    [9]
    朱济友, 于强, Di Yang, et al. 叶生态特征及其相关性对下垫面热效应的生态权衡[J]. 农业机械学报, 2018, 49(11): 201−209.

    Zhu J Y, Yu Q, Di Y, et al. Ecological balance of leaf ecological characteristics and their correlation to thermal effects of underlying surfaces[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(11): 201−209.
    [10]
    Pollicelli M D L P, Idaszkin Y L, Gonzalez-josé R, et al. Leaf shape variation as a potential biomarker of soil pollution[J]. Ecotoxicology and Environmental Safety, 2018, 164: 69−74. doi: 10.1016/j.ecoenv.2018.08.003
    [11]
    Lambrecht S C, Mahieu S, Cheptou P O. Natural selection on plant physiological traits in an urban environment[J]. Acta Oecologica, 2016, 77: 67−74. doi: 10.1016/j.actao.2016.09.002
    [12]
    Damián X, Ochoa-López S, Gaxiola A, et al. Natural selection acting on integrated phenotypes: covariance among functional leaf traits increases plant fitness[J]. New Phytologist, 2020, 225(1): 546−557. doi: 10.1111/nph.16116
    [13]
    王会霞, 石辉, 李秧秧. 城市大气环境下绿化植物叶片比叶重和光合色素含量[J]. 中国环境科学, 2011, 31(7): 1134−1142.

    Wang H X, Shi H, Li Y Y. Leaf mass per area and photosynthetic pigments of greening plant species under different urban atmospheric environment[J]. China Environmental Science, 2011, 31(7): 1134−1142.
    [14]
    Pataki D E, Mccarthya H R, Gillespie T, et al. A trait-based ecology of the Los Angeles urban forest[J]. Ecosphere, 2013, 4(6): 1−20.
    [15]
    Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428: 821. doi: 10.1038/nature02403
    [16]
    Roddy A B, Martίnez-Perez C, Teixido A L, et al. Towards the flower economics spectrum[J]. New Phytologist, 2021, 229: 665−672. doi: 10.1111/nph.16823
    [17]
    Caruso C M, Peterson S B, Ridley C E. Natural selection on floral traits of Lobelia: spatial and temporal variation[J]. American Journal of Botany, 2003, 90(9): 1333−1340. doi: 10.3732/ajb.90.9.1333
    [18]
    王玉贤, 侯盟, 谢言言, 等. 青藏高原高寒草甸植物花寿命与花吸引特征的关系及其对雌性繁殖成功的影响[J]. 植物生态学报, 2020, 44(9): 905−915. doi: 10.17521/cjpe.2020.0130

    Wang Y X, Hou M, Xie Y Y, et al. Relationships of flower longevity with attractiveness traits and their effects on female fitness of alpine meadow plants on the Qinghai-Xizang Plateau, China[J]. Chinese Journal of Plant Ecology, 2020, 44(9): 905−915. doi: 10.17521/cjpe.2020.0130
    [19]
    毛婉嫕, 王一峰, 杨励龙, 等. 重齿风毛菊繁殖分配及花部特征与海拔的相关性[J]. 生态学杂志, 2019, 38(1): 60−66.

    Mao W Y, Wang Y F, Yang L L, et al. Reproductive allocation and floral characteristic of Saussurea katochaete in relation to elevation[J]. Chinese Journal of Ecology, 2019, 38(1): 60−66.
    [20]
    祁如林, 马文梅, 祁百元, 等. 弯齿风毛菊花部器官的海拔变异及其与种子质量和数目的关系[J]. 应用生态学报, 2019, 30(8): 2647−2653.

    Qi R L, Ma W M, Qi B Y, et al. Altitudinal variation of floral organs in Saussurea przewalskii and its relationship with the number and mass of seeds[J]. Chinese Journal of Appiled Ecology, 2019, 30(8): 2647−2653.
    [21]
    郑健, 胡增辉, 郑勇奇, 等. 花楸树种源间表型性状的地理变异分析[J]. 植物资源与环境学报, 2012, 21(3): 50−56.

    Zheng J, Hu Z H, Zheng Y Q, et al. Analysis on geographic variation of phenotypic traits of Sorbus pohuashanensis among different provenances[J]. Journal of Plant Resources and Environment, 2012, 21(3): 50−56.
    [22]
    沙飞, 杨海牛, 刘芳, 等. 修剪强度和留芽数量对紫薇二次开花的影响[J]. 湖北农业科学, 2020, 59(5): 106−109, 137.

    Sha F, Yang H N, Liu F, et al. Effects of pruning intensity and number of remaining buds on secondfloweing of Lagerstroemia indica[J]. Hubei Agricultural Sciences, 2020, 59(5): 106−109, 137.
    [23]
    刘乐乐, 朱亚灵, 许宏刚, 等. 兰州市城市绿地木本植物多样性研究[J]. 草原与草坪, 2020, 40(1): 56−62.

    Liu L L, Zhu Y L, Xu H G, et al. Study on species diversity of woody plant in urban greenland of Lanzhou[J]. Grass and Turf, 2020, 40(1): 56−62.
    [24]
    王志刚, 刘芳. 西北干旱区气候特点与城市树种选择[J]. 中国城市林业, 2011, 9(2): 42−50.

    Wang Z G, Liu F. Climate characteristics and trees species selection for urban forest in arid areas of northwest China[J]. Journal of Chinese Urban Forestry, 2011, 9(2): 42−50.
    [25]
    吴迪. 泰安市木本园林植物最佳观赏期调查研究[D]. 泰安: 山东农业大学, 2015.

    Wu D. Investigation on the best ornamental period of woody landscape plants in Taian[D]. Taian: Shandong Agricultural University, 2015.
    [26]
    储吴樾, 张往祥, 范俊俊. 观赏海棠花期性状与有效积温的关系[J]. 福建农林大学学报(自然科学版), 2018, 47(2): 153−159.

    Chu W Y, Zhang W X, Fan J J. The relationship between flowering characteristics and the effective accumulated temperature in ornamental crabapple[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2018, 47(2): 153−159.
    [27]
    Brock M T, Weinig C. Plasticity and environment-specific covariance: an investigation of floral–vegetative and within flower correlations[J]. Evolution, 2007, 61(12): 2913−2924. doi: 10.1111/j.1558-5646.2007.00240.x
    [28]
    赵园园, 王海洋. 重庆市园林树木生长特征及其对生境响应[J]. 西南大学学报(自然科学版), 2019, 41(11): 7−18.

    Zhao Y Y, Wang H Y. Functional trait variation and its relationship with different habitats of woody plants in Chongqing[J]. Journal of Southwest University (Natural Sciences Edition), 2019, 41(11): 7−18.
    [29]
    吕丹, 吴甘霖, 邱东, 等. 城市常绿园林植物香樟叶片色素变异特征研究[J]. 生物学杂志, 2019, 36(6): 59−63.

    Lü D, Wu G L, Qiu D, et al. Variation patterns of leaf pigments of an evergreen garden plant Cinnamomum camphora in urban area[J]. Journal of Biology, 2019, 36(6): 59−63.
    [30]
    Núñez-Florez R, Pérez-Gómez U, Femández-Méndez F. Functional diversity criteria for selecting urban trees[J]. Urban Forestry and Urban Greening, 2019, 38: 251−256. doi: 10.1016/j.ufug.2019.01.005
    [31]
    Barwise Y, Kumar P. Designing vegetation barriers for urban air pollution abatement: a practical review for appropriate plant species selection[J]. Climate and Atmospheric Science, 2020, 3: 12. doi: 10.1038/s41612-020-0115-3
    [32]
    程晓月, 许宏刚, 朱亚灵, 等. 2021. 兰州市中心城区道路绿地土壤pH和养分特征[J]. 草业科学, 2021, 38(3): 468−479.

    Cheng X Y, Xu H G, Zhu Y L, et al. Study on soil pH and nutrients in a roadside green belt in a central urban area of Lanzhou[J]. Pratacultural Science, 2021, 38(3): 468−479.
    [33]
    吕贻忠, 李保国. 土壤学实验[M]. 北京: 中国农业出版社, 2010.

    Lü Y Z, Li B G. Agrology experiment[M]. Beijing: China Agricultural Press, 2010.
    [34]
    王可, 肖路, 田盼立, 等. 中国 35 个城市行道树树种组成特征研究[J]. 植物研究, 2020, 40(4): 568−574.

    Wang K, Xiao L, Tian P L, et al. Urban street tree species composition in 35 cities of China[J]. Bulletin of Botanical Research, 2020, 40(4): 568−574.
    [35]
    Pérez-Harguindeguy N, Dίaz S, Garnier E, et al. New handbook for standardised measurement of plant functional traits worldwide[J]. Australian Journal of Botany, 2013, 61: 167−234. doi: 10.1071/BT12225
    [36]
    Mukherjee A, Agrawal M. Use of GLM approach to assess the responses of tropical trees to urban air pollution in relation to leaf functional traits and tree characteristics[J]. Ecotoxicology and Environmental Safety, 2018, 152: 42−54. doi: 10.1016/j.ecoenv.2018.01.038
    [37]
    朱济友, 于强, 刘亚培, 等. 植物功能性状及其叶经济谱对城市热环境的响应[J]. 北京林业大学学报, 2018, 40(9): 72−81. doi: 10.13332/j.1000-1522.20180132

    Zhu J Y, Yu Q, Liu Y P, et al. Response of plant functional traits and leaf economics spectrum to urban thermal environment[J]. Journal of Beijing Forestry University, 2018, 40(9): 72−81. doi: 10.13332/j.1000-1522.20180132
    [38]
    Westoby M, Schrader J, Falster D. Trait ecology of startup plants[J]. New Phytologist, 2022, 235: 842−847. doi: 10.1111/nph.18193
    [39]
    Kenney A M, Mckay J K, Richards J H, et al. Direct and indirect selection on flowering time, water-use efficiency (WUE, δ13C), and WUE plasticity to drought in Arabidopsis thaliana[J]. Ecology and Evolution, 2014, 4(23): 4505−4521. doi: 10.1002/ece3.1270
    [40]
    王俪玢, 黄云浩, 张新娜, 等. 雌雄异株树种簇毛槭的生殖成功影响因子探究[J]. 林业科学研究, 2020, 33(6): 114−120.

    Wang L B, Huang Y H, Zhang X N, et al. Factors affecting reproductive success in dioecious tree, Acer barbinerve[J]. Forestry Research, 2020, 33(6): 114−120.
    [41]
    Midgley J, Bond W. Leaf size and inflorescence size may be allometrically related traits[J]. Oecologia, 1989, 78(3): 427−429. doi: 10.1007/BF00379120
    [42]
    Hodgson J G, Santini B A, Marti G M, et al. Trade-offs between seed and leaf size (seed-phytomer-leaf theory): functional glue linking regenerative with life history strategies and taxonomy with ecology?[J]. Annals of Botany, 2017, 120: 633−652.
    [43]
    Ilyas M, Liu Y Y, Sakhawat S, et al. Adaptation of functional traits and their plasticity of three ornamental trees growing in urban environment[J]. Scientia Horticulturae, 2021, 286: 110248. doi: 10.1016/j.scienta.2021.110248
  • Related Articles

    [1]Ji Ziyu, Liu Yanhong, Qin Qianqian. Photosynthetic response and physiological and biochemical adaptability characteristics of Fraxinus velutinus to urban nighttime lighting[J]. Journal of Beijing Forestry University, 2025, 47(2): 58-65. DOI: 10.12171/j.1000-1522.20230028
    [2]Zhang Luyue, Liu Yanhong, Han Dongqing. Differences in growth and adaptive strategies between male and female plants of Cercidiphyllum japonicum[J]. Journal of Beijing Forestry University, 2024, 46(12): 71-81. DOI: 10.12171/j.1000-1522.20230263
    [3]Han Rong, Tian Qing, Sun Yimei, Li Juanxia, Zhu Zhu. Stoichiometric characteristics of carbon, nitrogen and phosphorus in the leaves of 42 woody landscape plants in Lanzhou City of northwestern China[J]. Journal of Beijing Forestry University, 2023, 45(7): 110-119. DOI: 10.12171/j.1000-1522.20220168
    [4]Yan Hong, Sun Yingjie, Liu Binhui. Effects of competition on drought adaptability and growth decline of Pinus koraiensis trees[J]. Journal of Beijing Forestry University, 2022, 44(6): 1-9. DOI: 10.12171/j.1000-1522.20210198
    [5]Li Jinhang, Zhou Mei, Zhu Jiyou, Xu Chengyang. Adaptability response of root architecture of Cotinus coggygria seedlings to soil nutrient stress[J]. Journal of Beijing Forestry University, 2020, 42(3): 65-77. DOI: 10.12171/j.1000-1522.20190218
    [6]Lian Zhenghua, Zhang Chunyu, Cheng Yanxia, Xin Benhua. Geographical variations of functional traits of typical tree species in northeastern China[J]. Journal of Beijing Forestry University, 2019, 41(3): 42-48. DOI: 10.13332/j.1000-1522.20180352
    [7]Liu Ming, Zhang Deshun. Adaptability of landscape tree species response to climate change in Shanghai within the past 55 years[J]. Journal of Beijing Forestry University, 2018, 40(9): 107-117. DOI: 10.13332/j.1000-1522.20180113
    [8]LI Ying, YAO Jing, YANG Song, HOU Ji-hua.. Leaf functional traits of main tree species at different environmental gradients in Dongling Mountain, Beijing.[J]. Journal of Beijing Forestry University, 2014, 36(1): 72-77.
    [9]ZHANG Li-sha, DAI Jian-feng, GAO Qiong, LIU Hao, ZHANG Hua, ZHAO Wei, MAO Jian-feng, LI Yue. Seedling adaptation of hybrid pine Pinus densata and its parental species in the high elevation habitat.[J]. Journal of Beijing Forestry University, 2012, 34(5): 15-24.
    [10]WANG Yan-ping, LIU Sheng-li, CHEN Yu-zhen, LU Cun-fu. Leaf structural characteristics of three wild Rhododendron plants and their adaptability to Changbai Mountains, northeastern China.[J]. Journal of Beijing Forestry University, 2012, 34(4): 18-25.
  • Cited by

    Periodical cited type(4)

    1. 杨桦,李祥乾,王帆,方睿,杨伟. 长足大竹象信息素结合蛋白CbuqPBP2互作蛋白的筛选与验证. 西北农林科技大学学报(自然科学版). 2024(01): 87-97 .
    2. 万超,张月,胡莉,伍炳华,袁媛. 茉莉花JsMYB305转录因子的原核表达及蛋白纯化. 福建农业学报. 2022(02): 164-169 .
    3. 武建颖,张燕,孙贺贺,赵玉兰,董金皋,申珅,郝志敏. 玉米大斑病菌蛋白激酶A催化亚基StPKA-C1/C2的表达与互作蛋白筛选. 农业生物技术学报. 2022(10): 1976-1986 .
    4. 胡莉,万超,张蕖,陈清西,伍炳华,袁媛. 茉莉花JsMYB305转录因子互作蛋白的筛选及验证. 福建农业学报. 2022(09): 1135-1144 .

    Other cited types(9)

Catalog

    Article views (284) PDF downloads (28) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return