• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wang-Ren Zhongyuan, Zhang Shouhong, Zhang Sunxun, Yan Jing, Yang Hang, Wang Kai, Zhang Chengyu, Wei Liangyi. Effects of plant roots on the regulating function of green roof runoff[J]. Journal of Beijing Forestry University, 2023, 45(6): 108-116. DOI: 10.12171/j.1000-1522.20220274
Citation: Wang-Ren Zhongyuan, Zhang Shouhong, Zhang Sunxun, Yan Jing, Yang Hang, Wang Kai, Zhang Chengyu, Wei Liangyi. Effects of plant roots on the regulating function of green roof runoff[J]. Journal of Beijing Forestry University, 2023, 45(6): 108-116. DOI: 10.12171/j.1000-1522.20220274

Effects of plant roots on the regulating function of green roof runoff

More Information
  • Received Date: July 06, 2022
  • Revised Date: January 04, 2023
  • Available Online: May 10, 2023
  • Published Date: June 24, 2023
  •   Objective  Green roofs have various functions of stormwater management (e.g., rainwater retention, peak discharge reduction). However, the effects of plant roots on the hydrological performance of green roofs are unclear. The objective of this study was to indicate the impact of plant roots on hydrological performance of green roofs. The results of this study were expected to provide scientific support for green roof plant configuration and management.
      Method  Four green roofs with different vegetation cover (Sedum lineare, Portulaca grandiflora, Sedum spectabile and a non-vegetated substrate) were set up in Beijing, and the rainfall-runoff process and water content dynamic changes of green roofs were monitored. The root characteristics such as root length density and root diameter of plants were measured and the influence of plant roots on the stormwater retention of green roofs was analyzed.
      Result  The stormwater retention capacity of green roof substrate with plant roots was 2.1−4.1 mm larger than that of the non-vegetated substrate. The average time of runoff generation from green roofs containing plant roots was 6−10 min earlier than the non-vegetated substrate, and the average peak present time was 9−26 min earlier than the non-vegetated substrate. When the total root length density was similar, the stormwater retention performance of the S. spectabile green roof with thick root system was better than that of the P. grandiflora with thin root system. The S. lineare had the largest total root length density and average root diameter among the other plants, and the S. lineare green roof had the least amount of the proportion of the initial loss. So as the rainfall increased, it may have a more obvious decline of stormwater retention performance than the other plants.
      Conclusion  Although the plant roots could increase the stormwater retention capacity of green roofs, it may advance the generation time of runoff. Meanwhile, the radial distribution of the root system also affects the runoff regulation function of green roofs.
  • [1]
    Elmira J, Wah C H, Mehdi S, et al. Review on the cooling potential of green roofs in different climates[J]. Science of the Total Environment, 2021, 791: 148407. [2022−02−14]. https://www.sciencedirect.com/science/article/pii/S0048969721034781.
    [2]
    王书敏, 李兴扬, 张峻华, 等. 城市区域绿色屋顶普及对水量水质的影响[J]. 应用生态学报, 2014, 25(7): 2026−2032. doi: 10.13287/j.1001-9332.2014.0132

    Wang S M, Li X Y, Zhang J H, et al. Influence of green roof application on water quantity and quality in urban region[J]. Chinese Journal of Applied Ecology, 2014, 25(7): 2026−2032. doi: 10.13287/j.1001-9332.2014.0132
    [3]
    张建云, 宋晓猛, 王国庆, 等. 变化环境下城市水文学的发展与挑战−Ⅰ. 城市水文效应[J]. 水科学进展, 2014, 25(4): 594−605.

    Zhang J Y, Song X M, Wang G Q, et al. Development and challenge of urban hydrology in changing environment (Ⅰ): effect of urban hydrology[J]. Advances in Water Science, 2014, 25(4): 594−605.
    [4]
    Palla A, Gnecco I, Lanza L G. Unsaturated 2D modelling of subsurface water flow in the coarse-grained porous matrix of a green roof[J]. Journal of Hydrology, 2009, 379(1−2): 193−204. doi: 10.1016/j.jhydrol.2009.10.008
    [5]
    Guo Y P, Zhang S H, Liu S. Runoff reduction capabilities and irrigation requirements of green roofs[J]. Water Resources Management, 2014, 28(5): 1363−1378. doi: 10.1007/s11269-014-0555-9
    [6]
    Aboelata A. Assessment of green roof benefits on buildings’ energy-saving by cooling outdoor spaces in different urban densities in arid cities[J/OL]. Energy, 2021, 219: 119514[2022−02−12]. https://www.sciencedirect.com/science/article/pii/S0360544220326219.
    [7]
    Vijayaraghavan K. Green roofs: a critical review on the role of components, benefits, limitations and trends[J]. Renewable and Sustainable Energy Reviews, 2016, 57: 740−752. doi: 10.1016/j.rser.2015.12.119
    [8]
    吴昕宇, 张清涛, 黄思宇, 等. 超纤渗灌对绿色屋顶土壤水分和蒸散发的影响[J]. 农业工程学报, 2022, 38(2): 131−138. doi: 10.11975/j.issn.1002-6819.2022.02.015

    Wu X Y, Zhang Q T, Huang S Y, et al. Effects of microfiber capillary wicking irrigation on soil moisture and evapotranspiration of green roofs[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(2): 131−138. doi: 10.11975/j.issn.1002-6819.2022.02.015
    [9]
    Connelly M, Hodgson M. Experimental investigation of the sound transmission of vegetated roofs[J]. Applied Acoustics, 2013, 74(10): 1136−1143. doi: 10.1016/j.apacoust.2013.04.003
    [10]
    Gong Y, Zhang X, Li J, et al. Factors affecting the ability of extensive green roofs to reduce nutrient pollutants in rainfall runoff[J/OL]. Science of The Total Environment, 2020, 732: 139248[2022−02−12]. https://www.sciencedirect.com/science/article/pii/S0048969720327650.
    [11]
    罗珊, 周永潮, 张仪萍. 绿色屋面对雨水径流控制效果及影响因素[J]. 浙江大学学报:工学版, 2018, 52(5): 845−852.

    Luo S, Zhou Y C, Zhang Y P. Experimental study on performance and its influence factors of green roof on stormwater management[J]. Journal of Zhejiang University(Engineering Science), 2018, 52(5): 845−852.
    [12]
    Wei T, Jim C Y, Chen A, et al. A random effects model to optimize soil thickness for green-roof thermal benefits in winter[J]. Energy and Buildings, 2021, 237: 110827[2022−02−12]. https://www.sciencedirect.com/science/article/pii/S2214157X19304459.
    [13]
    Polo-Labarrios M A, Quezada-García S, Sánchez-Mora H, et al. Comparison of thermal performance between green roofs and conventional roofs[J/OL]. Case Studies in Thermal Engineering, 2020, 21: 100697[2022−02−12]. https://doi.org/10.1016/j.csite.2020.100697.
    [14]
    Zhang S H, Lin Z X, Zhang S X, et al. Stormwater retention and detention performance of green roofs with different substrates: observational data and hydrological simulations[J/OL]. Journal of Environmental Management, 2021, 291: 112682[2022−02−12]. https://www.sciencedirect.com/science/article/pii/S0301479721007441.
    [15]
    申红彬, 徐宗学, 张书函, 等. 绿色屋顶降雨径流削减效果监测与过程模拟[J]. 农业工程学报, 2020, 36(5): 175−181. doi: 10.11975/j.issn.1002-6819.2020.05.020

    Shen H B, Xu Z X, Zhang S H, et al. Monitoring and simulation of rainfall-runoff reduction effects and process on green roofs[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(5): 175−181. doi: 10.11975/j.issn.1002-6819.2020.05.020
    [16]
    Lee J Y, Lee M J, Han M. A pilot study to evaluate runoff quantity from green roofs[J]. Journal of Environmental Management, 2015, 152: 171−176.
    [17]
    Viola F, Hellies M, Deidda R. Retention performance of green roofs in representative climates worldwide[J]. Journal of Hydrology, 2017, 553: 763−772. doi: 10.1016/j.jhydrol.2017.08.033
    [18]
    Jennett T S, Zheng Y. Component characterization and predictive modeling for green roof substrates optimized to adsorb P and improve runoff quality: a review[J]. Environmental Pollution, 2018, 237: 988−999. doi: 10.1016/j.envpol.2017.11.012
    [19]
    Conn R, Werdin J, Rayner J P, et al. Green roof substrate physical properties differ between standard laboratory tests due to differences in compaction[J/OL]. Journal of Environmental Management, 2020, 261: 110206[2022−02−12]. https://www.sciencedirect.com/science/article/pii/S0301479720301419.
    [20]
    Scholl P, Leitner D, Kammerer G, et al. Root induced changes of effective 1D hydraulic properties in a soil column[J]. Plant and Soil, 2014, 381(1−2): 193−213. doi: 10.1007/s11104-014-2121-x
    [21]
    Zhu H, Zhang L M, Garg A. Investigating plant transpiration-induced soil suction affected by root morphology and root depth[J]. Computers and Geotechnics, 2018, 103: 26−31. doi: 10.1016/j.compgeo.2018.06.019
    [22]
    吴钦孝, 韩冰, 李秧秧. 黄土丘陵区小流域土壤水分入渗特征研究[J]. 中国水土保持科学, 2004, 2(2): 1−5. doi: 10.3969/j.issn.1672-3007.2004.02.001

    Wu Q X, Han B, Li Y Y. Characteristics of soil infiltration in watersheds in Loess hilly region[J]. Science of Soil and Water Conservation, 2004, 2(2): 1−5. doi: 10.3969/j.issn.1672-3007.2004.02.001
    [23]
    郑力文. 林木根系对土壤性质的影响研究[D]. 北京: 北京林业大学, 2015.

    Zheng L W. Effect of root system on soil properties[D]. Beijing: Beijing Forestry University, 2015.
    [24]
    Armson D, Stringer P, Ennos A R. The effect of street trees and amenity grass on urban surface water runoff in Manchester, UK[J]. Urban Forestry & Urban Greening, 2013, 12(3): 282−286.
    [25]
    Duan R, Fedler C B, Borrelli J. Field evaluation of infiltration models in lawn soils[J]. Irrigation Science, 2011, 29(5): 379−389. doi: 10.1007/s00271-010-0248-y
    [26]
    Johnson M S, Lehmann J. Double-funneling of trees: Stemflow and root-induced preferential flow[J]. Ecoscience, 2006, 13(3): 324−333. doi: 10.2980/i1195-6860-13-3-324.1
    [27]
    Carpenter D D, Hallam L. Influence of planting soil mix characteristics on bioretention cell design and performance[J]. Journal of Hydrologic Engineering, 2010, 15(6): 404−416. doi: 10.1061/(ASCE)HE.1943-5584.0000131
    [28]
    张中彬, 彭新华. 土壤裂隙及其优先流研究进展[J]. 土壤学报, 2015, 52(3): 477−488. doi: 10.11766/trxb201409030446

    Zhang Z B, Peng X H. A review of researches on soil cracks and their impacts on preferential flow[J]. Acta Pedological Sinica, 2015, 52(3): 477−488. doi: 10.11766/trxb201409030446
    [29]
    Novák V, Simunek J, Genuchten M T V. Infiltration of water into soil with cracks[J]. Journal of Irrigation and Drainage Engineering, 2000, 126(1): 41−47. doi: 10.1061/(ASCE)0733-9437(2000)126:1(41)
    [30]
    马佳. 裂土优势流与边坡稳定性分析方法[D]. 武汉: 中国科学院研究生院(武汉岩土力学研究所), 2007.

    Ma J. Preferential flow and stability analysis method for fissure clay slopes[D]. Wuhan: Graduate University of Chinese Academy of Sciences (Wuhan Institute of Rock and Soil Mechanics), 2007.
    [31]
    章超斌, 李建龙, 张颖, 等. 基于RGB模式的一种草地盖度定量快速测定方法研究[J]. 草业学报, 2013, 22(4): 220−226. doi: 10.11686/cyxb20130427

    Zhang C B, Li J L, Zhang Y, et al. A quantitative analysis method for measuring grassland coverage based on the RGB model[J]. Acta Prataculturae Sinica, 2013, 22(4): 220−226. doi: 10.11686/cyxb20130427
    [32]
    荣良燕, 姚拓, 黄高宝, 等. 植物根际优良促生菌(PGPR)筛选及其接种剂部分替代化肥对玉米生长影响研究[J]. 干旱地区农业研究, 2013, 31(2): 59−65. doi: 10.3969/j.issn.1000-7601.2013.02.012

    Rong L Y, Yao T, Huang G B, et al. Screening of plant growth promoting rhizobacteria strains and effects of inoculant on growth of maize by replacing part of chemical fertilizers[J]. Agricultural Research in Arid Areas, 2013, 31(2): 59−65. doi: 10.3969/j.issn.1000-7601.2013.02.012
    [33]
    葛德, 张守红. 不同降雨条件下植被对绿色屋顶径流调控效益影响[J]. 环境科学, 2018, 39(11): 5015−5023. doi: 10.13227/j.hjkx.201801069

    Ge D, Zhang S H. Impacts of vegetation on hydrological performances of green roofs under different rainfall conditions[J]. Environmental Science, 2018, 39(11): 5015−5023. doi: 10.13227/j.hjkx.201801069
    [34]
    卢华兴, 段旭, 赵洋毅, 等. 滇南地区普洱茶树根系对土壤优先路径形成的影响[J]. 水土保持学报, 2021, 35(4): 80−87. doi: 10.13870/j.cnki.stbcxb.2021.04.012

    Lu H X, Duan X, Zhao Y Y, et al. Effect of root of Pu’er tea on the formation of soil priority path in southern Yunnan[J]. Journal of Soil and Water Conservation, 2021, 35(4): 80−87. doi: 10.13870/j.cnki.stbcxb.2021.04.012
    [35]
    Zhang Y H, Niu J Z, Zhu W L, et al. Effects of plant roots on soil preferential pathways and soil matrix in forest ecosystems[J]. Journal of Forestey Research, 2015, 26(2): 397−404. doi: 10.1007/s11676-015-0023-2
    [36]
    Kazemi F, Mohorko R. Review on the roles and effects of growing media on plant performance in green roofs in world climates[J]. Urban Forestry & Urban Greening, 2017, 23: 13−26.
    [37]
    Stovin V, Poë S, de Ville S, et al. The influence of substrate and vegetation configuration on green roof hydrological performance[J]. Ecological Engineering, 2015, 85: 159−172. doi: 10.1016/j.ecoleng.2015.09.076
    [38]
    牛健植, 余新晓, 张志强. 优先流研究现状及发展趋势[J]. 生态学报, 2006, 26(1): 231−243. doi: 10.3321/j.issn:1000-0933.2006.01.030

    Niu J Z, Yu X X, Zhang Z Q. The present and future research on preferential flow[J]. Acta Ecologica Sinica, 2006, 26(1): 231−243. doi: 10.3321/j.issn:1000-0933.2006.01.030
    [39]
    李建兴, 谌芸, 何丙辉, 等. 不同草本的根系分布特征及对土壤水分状况的影响[J]. 水土保持通报, 2013, 33(1): 81−86. doi: 10.13961/j.cnki.stbctb.2013.01.046

    Li J X, Chen Y, He B H, et al. Distribution characteristics of different herbs’ root systems and the effects on soil moisture[J]. Bulletin of Soil and Water Conservation, 2013, 33(1): 81−86. doi: 10.13961/j.cnki.stbctb.2013.01.046
    [40]
    李建兴, 何丙辉, 谌芸. 不同护坡草本植物的根系特征及对土壤渗透性的影响[J]. 生态学报, 2013, 33(5): 1535−1544. doi: 10.5846/stxb201205170737

    Li J X, He B H, Chen Y. Root features of typical herb plants for hillslope protection and their effects on soil infiltration[J]. Acta Ecologica Sinica, 2013, 33(5): 1535−1544. doi: 10.5846/stxb201205170737
    [41]
    王鑫皓, 王云琦, 马超, 等. 根系构型对土壤渗透性能的影响[J]. 中国水土保持科学, 2018, 16(4): 73−82. doi: 10.16843/j.sswc.2018.04.010

    Wang X H, Wang Y Q, Ma C, et al. Effect of root architecture on soil permeability[J]. Science of Soil and Water Conservation, 2018, 16(4): 73−82. doi: 10.16843/j.sswc.2018.04.010
    [42]
    Zhang S L, Liu X S, Sun G Q. Effect of liquid injection intensity on preferential flow and its characteristics by soil sensors[J]. Sensors and Materials, 2021, 33(6): 1989−1998. doi: 10.18494/SAM.2021.3279
    [43]
    王玮璐, 贺康宁, 张潭, 等. 青海高寒区水源涵养林土壤机械组成和理化性质对其饱和导水率和持水能力的影响[J]. 植物资源与环境学报, 2020, 29(2): 69−77. doi: 10.3969/j.issn.1674-7895.2020.02.08

    Wang W L, He K N, Zhang T, et al. Effects of mechanical components and physical and chemical properties of soil in water conservation forests in cold highland area of Qinghai on its saturated hydraulic conductivity and water holding capacity[J]. Journal of Plant Resources and Environment, 2020, 29(2): 69−77. doi: 10.3969/j.issn.1674-7895.2020.02.08
    [44]
    王紫薇, 黄来明, 邵明安, 等. 青海高寒区不同土地利用方式下土壤持水能力及影响因素[J]. 干旱区研究, 2021, 38(6): 1722−1730. doi: 10.13866/j.azr.2021.06.24

    Wang Z W, Huang L M, Shao M A, et al. Soil water holding capacity under different land use patterns in the Qinghai Alpine Region[J]. Arid Zone Research, 2021, 38(6): 1722−1730. doi: 10.13866/j.azr.2021.06.24
    [45]
    杨默远, 张书函, 潘兴瑶. 绿色屋顶径流减控效果的监测分析[J]. 中国给水排水, 2019, 35(15): 134−138. doi: 10.19853/j.zgjsps.1000-4602.2019.15.028

    Yang M Y, Zhang S H, Pan X Y. Monitoring and evaluation of green roof runoff reduction effect[J]. China Water & Wastewater, 2019, 35(15): 134−138. doi: 10.19853/j.zgjsps.1000-4602.2019.15.028
    [46]
    Zhang Z, Szota C, Fletcher T D, et al. Green roof storage capacity can be more important than evapotranspiration for retention performance[J]. Journal of Environmental Management, 2019, 232: 404−412.
    [47]
    Palla A, Sansalone J J, Gnecco I, et al. Storm water infiltration in a monitored green roof for hydrologic restoration[J]. Water Science and Technology, 2011, 64(3): 766−773. doi: 10.2166/wst.2011.171
    [48]
    Zhang S H, Guo Y P. Analytical probabilistic model for evaluating the hydrologic performance of green roofs[J]. Journal of Hydrologic Engineering, 2013, 18(1): 19−28. doi: 10.1061/(ASCE)HE.1943-5584.0000593
    [49]
    Sims A W, Robinson C E, Smart C C, et al. Mechanisms controlling green roof peak flow rate attenuation[J/OL]. Journal of Hydrology, 2019, 577: 123972[2022−02−12]. https://doi.org/10.1016/j.jhydrol.2019.123972.
    [50]
    Zhang Z, Szota C, Fletcher T D, et al. Influence of plant composition and water use strategies on green roof stormwater retention[J]. Science of The Total Environment, 2018, 625: 775−781. doi: 10.1016/j.scitotenv.2017.12.231
  • Cited by

    Periodical cited type(16)

    1. 谢微,尹若勇,温梦玲,张宝津,邓小梅. 诗琳通木兰对干旱胁迫的生理响应. 林业与环境科学. 2025(01): 111-118 .
    2. 冯柳俊,陈志强,陈志彪,罗立津,王健. 南方红壤侵蚀区芒萁对聚乙二醇6000模拟干旱胁迫的响应. 安徽农业科学. 2023(20): 66-69+108 .
    3. 梁青兰,韩友吉,乔艳辉,谢孔安,李双云,董玉峰,李善文,张升祥. 干旱胁迫对黑杨派无性系生长及生理特性的影响. 北京林业大学学报. 2023(10): 81-89 . 本站查看
    4. 张忠辉,王文涛,包广道,刘婷,罗也,刘志越. 我国杨树抗旱性研究进展. 吉林林业科技. 2023(06): 35-41 .
    5. 苑正赛,乔艳辉,王丽,王相娥,姚俊修,李善文,韩友吉,董玉峰. 镉胁迫对黑杨派无性系生物量及镉离子含量的影响. 北京林业大学学报. 2021(12): 38-46 . 本站查看
    6. 黄海霞,连转红,王亮,杨琦琦,魏振艳,马彦军,张金霞. 裸果木渗透调节物质和抗氧化酶活性对干旱的响应. 干旱区研究. 2020(01): 227-235 .
    7. 姚俊修,乔艳辉,杨庆山,仲伟国,李庆华,董玉峰,李善文,吴德军. 重金属镉胁迫对黑杨派无性系光合生理及生长的影响. 西北林学院学报. 2020(02): 40-46+107 .
    8. 姚俊修,陈甘牛,李善文,乔艳辉,仲伟国,李庆华,董玉峰,吴德军. 镉胁迫对黑杨派无性系生理生化特性及生长的影响. 北京林业大学学报. 2020(04): 12-20 . 本站查看
    9. 郑涛,樊军锋,高建社,周永学. 美洲黑杨无性系抗旱性综合评价研究. 西北林学院学报. 2019(02): 98-104 .
    10. 郑涛,樊军锋,高建社,周永学. 11个白杨派无性系抗旱性综合评价. 西北林学院学报. 2019(04): 101-106 .
    11. 张文婷,王子邦. 6种常见彩叶灌木对干旱胁迫的生理响应. 江苏农业科学. 2018(08): 123-126 .
    12. 王曦,胡红玲,胡庭兴,张城浩,王鑫,刘丹. 干旱胁迫对桢楠幼树渗透调节与活性氧代谢的影响及施氮的缓解效应. 植物生态学报. 2018(02): 240-251 .
    13. 苏丹,殷小琳,董智,慕德宇,张晓晓,贾淑友. 白榆无性系生长特性及离子分布对NaCl胁迫的响应. 北京林业大学学报. 2017(05): 48-57 . 本站查看
    14. 杨传宝,孙超,李善文,姚俊修,刘敬国,矫兴杰. 白杨派无性系苗期耐盐性综合评价及筛选. 北京林业大学学报. 2017(10): 24-32 . 本站查看
    15. 邓辉茗,龙聪颖,蔡仕珍,苏明洁,王小梅. PEG-6000模拟干旱协迫对大蓟叶片生理特性的影响. 西北植物学报. 2017(05): 959-964 .
    16. 崔博文,乔光,范付华,丁贵杰,文晓鹏. 不同种源马尾松种质耐低磷的主成分与灰色关联度分析. 西南大学学报(自然科学版). 2017(08): 49-56 .

    Other cited types(15)

Catalog

    Article views (472) PDF downloads (69) Cited by(31)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return