Citation: | Zhang Hanzheng, Li Zhi, Liu Wen, Liu Chengyang. Mixed-mode fracture properties of parallel laminated bamboo lumber[J]. Journal of Beijing Forestry University, 2022, 44(7): 146-156. DOI: 10.12171/j.1000-1522.20220004 |
[1] |
李海涛, 宣一伟, 许斌, 等. 竹材在土木工程领域的应用[J]. 林业工程学报, 2020, 5(6): 1−10.
Li H T, Xuan Y W, Xu B, et al. Bamboo application in civil engineering field[J]. Journal of Forestry Engineering, 2020, 5(6): 1−10.
|
[2] |
陶慕轩, 聂建国, 樊健生, 等. 中国土木结构工程科技2035发展趋势与路径研究[J]. 中国工程科学, 2017, 19(1): 73−79.
Tao M X, Nie J G, Fan J S, et al. Development trends and path for China’s civil and structural engineering science and technology to 2035[J]. Strategic Study of CAE, 2017, 19(1): 73−79.
|
[3] |
李海涛, 张齐生, 吴刚, 等. 竹集成材研究进展[J]. 林业工程学报, 2016, 1(6): 10−16.
Li H T, Zhang Q S, Wu G, et al. A review on development of laminated bamboo lumber[J]. Journal of Forestry Engineering, 2016, 1(6): 10−16.
|
[4] |
Habibi M K, Lu Y. Crack propagation in bamboo’s hierarchical cellular structure[J]. Scientific Reports, 2014, 4(1): 1−7.
|
[5] |
冼杏娟, 冼定国. 竹材的微观结构及其与力学性能的关系[J]. 竹子研究汇刊, 1990(3): 10−23.
Xian X J, Xian D G. The relationship of microstructure and mechanical properties of bamboo[J]. Journal of Bamboo Research, 1990(3): 10−23.
|
[6] |
Chen Q, Dai C, Fang C, et al. Mode I interlaminar fracture toughness behavior and mechanisms of bamboo[J]. Materials & Design, 2019, 183: 108132.
|
[7] |
Shao Z, Fang C, Tian G. Mode I interlaminar fracture property of moso bamboo (Phyllostachys pubescens)[J]. Wood Science and Technology, 2009, 43(5−6): 527−536. doi: 10.1007/s00226-009-0265-2
|
[8] |
Amada S, Untao S. Fracture properties of bamboo[J]. Composites Part B: Engineering, 2001, 32(5): 451−459. doi: 10.1016/S1359-8368(01)00022-1
|
[9] |
Reynolds T P S, Sharma B, Serrano E, et al. Fracture of laminated bamboo and the influence of preservative treatments[J]. Composites Part B: Engineering, 2019, 174: 107017. doi: 10.1016/j.compositesb.2019.107017
|
[10] |
李征. 层板胶合木复合型层间断裂特性研究[D]. 大连: 大连理工大学, 2017.
Li Z. Study on mixed-mode interlaminar fracture characteristics of glued-laminated timber[D]. Dalian: Dalian University of Technology, 2017.
|
[11] |
Ducept F, Davies P, Gamby D. An experimental study to validate tests used to determine mixed mode failure criteria of glass/epoxy composites[J]. Composites Part A: Applied Science and Manufacturing, 1997, 28(8): 719−729. doi: 10.1016/S1359-835X(97)00012-2
|
[12] |
Choupani N. Experimental and numerical investigation of the mixed-mode delamination in Arcan laminated specimens[J]. Materials Science and Engineering: A, 2008, 478(1−2): 229−242. doi: 10.1016/j.msea.2007.05.103
|
[13] |
Benzeggagh M L, Kenane M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus[J]. Composites Science and Technology, 1996, 56(4): 439−449. doi: 10.1016/0266-3538(96)00005-X
|
[14] |
Shameli M, Choupani N. Fracture criterion of woven glass-epoxy composite using a new modified mixed-mode loading fixture[J]. International Journal of Applied Mechanics, 2016, 8(2): 1650015. doi: 10.1142/S1758825116500150
|
[15] |
Abu-Okail M, Nafea M, Ghanem M A, et al. Damage mechanism evaluation of polymer matrix composite reinforced with glass fiber via modified Arcan test specimens[J]. Journal of Failure Analysis and Prevention, 2021, 21(2): 451−461. doi: 10.1007/s11668-020-01078-3
|
[16] |
Hasanpour R, Choupani N. Rock fracture characterization using the modified Arcan test specimen[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(2): 346−354. doi: 10.1016/j.ijrmms.2008.07.004
|
[17] |
Rhême M, Botsis J, Cugnoni J, et al. Mixed mode fracture behavior of welded wood joints investigated with the Arcan test[J]. Wood Science and Technology, 2015, 50(1): 53−69.
|
[18] |
Pitti R M, Dubois F, Pop O. A proposed mixed-mode fracture specimen for wood under creep loadings[J]. International Journal of Fracture, 2011, 167(2): 195−209. doi: 10.1007/s10704-010-9544-z
|
[19] |
Méité M, Dubois F, Pop O, et al. Mixed mode fracture properties characterization for wood by digital images correlation and finite element method coupling[J]. Engineering Fracture Mechanics, 2013, 105: 86−100. doi: 10.1016/j.engfracmech.2013.01.008
|
[20] |
El-Hajjar R F. Experimental study and analytical modeling of translayer fracture in pultruded FRP composites[M]. Atlanta: Georgia Institute of Technology, 2004.
|
[21] |
邵卓平, 吴贻军, 王福利. 竹材横向断裂的物理模型与能量吸收机制: 基本组织开裂与界面脱粘[J]. 林业科学, 2012, 48(7): 108−113. doi: 10.11707/j.1001-7488.20120718
Shao Z P, Wu Y J, Wang F L. The physical model and energy absorbing mechanism of bamboo transverse fracture: the cracking of parenchyma tissue and layering of interface[J]. Scientia Silvae Sinicae, 2012, 48(7): 108−113. doi: 10.11707/j.1001-7488.20120718
|
[22] |
王福利, 王献轲, 周佳硕, 等. 竹材薄壁组织拉伸性能及其变异规律的研究[J]. 北京林业大学学报, 2020, 42(11): 130−137. doi: 10.12171/j.1000-1522.20200203
Wang F L, Wang X K, Zhou J S, et al. Tensile properties and its variation pattern of bamboo parenchyma[J]. Journal of Beijing Forestry University, 2020, 42(11): 130−137. doi: 10.12171/j.1000-1522.20200203
|
[23] |
Balcıoğlu H E, Yalçın D. The determination of fracture characterization of knitted fabric reinforced composites using Arcan test[J]. Fibers and Polymers, 2020, 21(4): 849−863. doi: 10.1007/s12221-020-9619-z
|
[24] |
Wu E M. Application of fracture mechanics to anisotropic plates[J]. Journal of Applied Mechanics, 1967, 34(4): 967−974. doi: 10.1115/1.3607864
|
[25] |
Jurf R A, Pipes R B. Interlaminar fracture of composite materials[J]. Journal of Composite Materials, 1982, 16(5): 386−394. doi: 10.1177/002199838201600503
|
[1] | Li Zhenrui, Li Yunqi, Lin Lanying, Liu Xing’e. Fracture behavior of wood bonding interface based on fiber pull-out test[J]. Journal of Beijing Forestry University, 2023, 45(6): 117-126. DOI: 10.12171/j.1000-1522.20230054 |
[2] | Chai Yuan, Tao Xin, Liang Shanqing, Fu Feng. Preparation and property characterization of crack-filled type microwave puffed wood based metal composites[J]. Journal of Beijing Forestry University, 2021, 43(10): 118-125. DOI: 10.12171/j.1000-1522.20210209 |
[3] | REN Wen-han, ZHANG Dan, WANG Ge, LI Wen-yan, CHENG Hai-tao. Mechanical and thermal properties of bamboo filler-high density polyethylene composites[J]. Journal of Beijing Forestry University, 2014, 36(4): 133-140. DOI: 10.13332/j.cnki.jbfu.2014.04.001 |
[4] | ZHAO Jun-shi, XU Zheng-dong, WANG Jin-lin, ZHANG Shuang-bao. Influence of fiber-glass on mechanical properties of composite laminates.[J]. Journal of Beijing Forestry University, 2014, 36(2): 129-132. |
[5] | LIU Xiao-guang, JI Xiao-dong, ZHAO Hong-hua, CHEN Li-hua, MA Lei. Tribological properties between roots of Pinus tabuliformis and soil[J]. Journal of Beijing Forestry University, 2012, 34(6): 63-67. |
[6] | TIAN Zhen-nong, ZHANG Le-wen. Macro-mechanical model and fracture mechanism of wood.[J]. Journal of Beijing Forestry University, 2010, 32(2): 153-156. |
[7] | GUO Wen-jing, BAO Fu-cheng, WANG Zheng.. Effects of compounding modes on structure and properties of wood fiberpoly(lactic acid) biocomposites.[J]. Journal of Beijing Forestry University, 2009, 31(4): 106-111. |
[8] | JIANG Jian-xin, YANG Zhong-kai, ZHU Li-wei, SHI Li-min, YAN Li-jie. Structure and property of bamboo fiber[J]. Journal of Beijing Forestry University, 2008, 30(1): 128-132. |
[9] | XUE Zhen-hua, , ZHAO Guang-jie. Crystal properties of montmorilonitewood composite[J]. Journal of Beijing Forestry University, 2008, 30(1): 114-118. |
[10] | CAO Jian-sheng, ZHANG Wan-jun, LIU Chang-ming, YANG Yong-hui. Fractured rock seepage characteristics and its impact on slope stability[J]. Journal of Beijing Forestry University, 2007, 29(4): 136-142. DOI: 10.13332/j.1000-1522.2007.04.028 |
1. |
孙永平,于新栋,柴希娟,徐开蒙,解林坤. 低熔点合金高低温循环浸渍杨木的性能及机理研究. 林产工业. 2024(04): 1-6 .
![]() | |
2. |
韦溶军,王志闯,王雪纯,王婷欢,王振宇,何正斌,伊松林. 锡铋合金/肉豆蔻酸制备具有金属外壳的储能木材. 北京林业大学学报. 2024(08): 25-33 .
![]() | |
3. |
陶鑫,田东雪,梁善庆,李善明,彭立民,傅峰. 微波膨化木基金属复合材料的涂饰性能及耐光老化研究. 北京林业大学学报. 2023(10): 140-148 .
![]() |