• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhang Hanzheng, Li Zhi, Liu Wen, Liu Chengyang. Mixed-mode fracture properties of parallel laminated bamboo lumber[J]. Journal of Beijing Forestry University, 2022, 44(7): 146-156. DOI: 10.12171/j.1000-1522.20220004
Citation: Zhang Hanzheng, Li Zhi, Liu Wen, Liu Chengyang. Mixed-mode fracture properties of parallel laminated bamboo lumber[J]. Journal of Beijing Forestry University, 2022, 44(7): 146-156. DOI: 10.12171/j.1000-1522.20220004

Mixed-mode fracture properties of parallel laminated bamboo lumber

More Information
  • Received Date: January 02, 2022
  • Revised Date: July 03, 2022
  • Available Online: July 06, 2022
  • Published Date: July 24, 2022
  •   Objective  This paper aims to explore the fracture performance of parallel bamboo glulam along the fiber direction under complex stress, and analyze its failure mechanism according to the fracture surface, finally get the basic law of composite fracture of parallel bamboo glulam, and establish the corresponding model.
      Method  Fracture behavior of parallel butterfly laminated bamboo lumber specimens along the fiber direction was tested with Arcan system. Several fracture modes of parallel laminated bamboo lumber were realized by adjusting loading angle, including type-I, type-II and mixed-mode fracture. The effects of fracture ligament length on fracture toughness of specimens were studied by setting different crack-to-height ratios. The fracture toughness was calculated by the measured extreme load and the failure mechanism of different forms of fracture of parallel laminated bamboo lumber was analyzed by combining the fracture section. Finally, the composite fracture criteria along the fiber direction of parallel laminated bamboo lumber was obtained by the analysis of mixed-mode fracture envelope diagram.
      Result  The fracture of parallel laminated bamboo lumber along the fiber direction of type-I, type-II and mixed-mode fracture was brittle fracture, and the specimens were more likely to be damaged under complex stress. The cracks in type-I fracture test mainly developed along the fiber direction between the parenchyma cell layers and the fiber/parenchyma cell tissue interface. In the type-II fracture test, cracks developed at the fiber/parenchyma cell interface, and at the same time, they also developed among the parenchyma cell layers, forming the bridging mechanism of parenchyma cell tissue and enhancing the bearing capacity of the specimen. In type-I and type-II fracture tests, the fibers were basically not involved in fracture. With the change of crack-to-height ratio, the fluctuation of type-I fracture toughness was small, type-II fracture toughness had the maximum value at 0.5 crack-to-height ratio. With the increase of loading angle in the parallel laminated bamboo lumber mixed-mode fracture test, the type-I fracture toughness component decreased gradually, and the type-II fracture toughness component increased gradually. With the increase of loading angle, the equivalent fracture toughness increased when the crack-to-height ratio of the specimen was 0.3, and decreased when the crack-to-height ratio of the specimen was 0.6.
      Conclusion  When the crack-to-height ratio is 0.3, the fracture criterion curve of the mixed-mode fracture coincides well with fracture characteristics of the parallel laminated bamboo lumber specimens.
  • [1]
    李海涛, 宣一伟, 许斌, 等. 竹材在土木工程领域的应用[J]. 林业工程学报, 2020, 5(6): 1−10.

    Li H T, Xuan Y W, Xu B, et al. Bamboo application in civil engineering field[J]. Journal of Forestry Engineering, 2020, 5(6): 1−10.
    [2]
    陶慕轩, 聂建国, 樊健生, 等. 中国土木结构工程科技2035发展趋势与路径研究[J]. 中国工程科学, 2017, 19(1): 73−79.

    Tao M X, Nie J G, Fan J S, et al. Development trends and path for China’s civil and structural engineering science and technology to 2035[J]. Strategic Study of CAE, 2017, 19(1): 73−79.
    [3]
    李海涛, 张齐生, 吴刚, 等. 竹集成材研究进展[J]. 林业工程学报, 2016, 1(6): 10−16.

    Li H T, Zhang Q S, Wu G, et al. A review on development of laminated bamboo lumber[J]. Journal of Forestry Engineering, 2016, 1(6): 10−16.
    [4]
    Habibi M K, Lu Y. Crack propagation in bamboo’s hierarchical cellular structure[J]. Scientific Reports, 2014, 4(1): 1−7.
    [5]
    冼杏娟, 冼定国. 竹材的微观结构及其与力学性能的关系[J]. 竹子研究汇刊, 1990(3): 10−23.

    Xian X J, Xian D G. The relationship of microstructure and mechanical properties of bamboo[J]. Journal of Bamboo Research, 1990(3): 10−23.
    [6]
    Chen Q, Dai C, Fang C, et al. Mode I interlaminar fracture toughness behavior and mechanisms of bamboo[J]. Materials & Design, 2019, 183: 108132.
    [7]
    Shao Z, Fang C, Tian G. Mode I interlaminar fracture property of moso bamboo (Phyllostachys pubescens)[J]. Wood Science and Technology, 2009, 43(5−6): 527−536. doi: 10.1007/s00226-009-0265-2
    [8]
    Amada S, Untao S. Fracture properties of bamboo[J]. Composites Part B: Engineering, 2001, 32(5): 451−459. doi: 10.1016/S1359-8368(01)00022-1
    [9]
    Reynolds T P S, Sharma B, Serrano E, et al. Fracture of laminated bamboo and the influence of preservative treatments[J]. Composites Part B: Engineering, 2019, 174: 107017. doi: 10.1016/j.compositesb.2019.107017
    [10]
    李征. 层板胶合木复合型层间断裂特性研究[D]. 大连: 大连理工大学, 2017.

    Li Z. Study on mixed-mode interlaminar fracture characteristics of glued-laminated timber[D]. Dalian: Dalian University of Technology, 2017.
    [11]
    Ducept F, Davies P, Gamby D. An experimental study to validate tests used to determine mixed mode failure criteria of glass/epoxy composites[J]. Composites Part A: Applied Science and Manufacturing, 1997, 28(8): 719−729. doi: 10.1016/S1359-835X(97)00012-2
    [12]
    Choupani N. Experimental and numerical investigation of the mixed-mode delamination in Arcan laminated specimens[J]. Materials Science and Engineering: A, 2008, 478(1−2): 229−242. doi: 10.1016/j.msea.2007.05.103
    [13]
    Benzeggagh M L, Kenane M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus[J]. Composites Science and Technology, 1996, 56(4): 439−449. doi: 10.1016/0266-3538(96)00005-X
    [14]
    Shameli M, Choupani N. Fracture criterion of woven glass-epoxy composite using a new modified mixed-mode loading fixture[J]. International Journal of Applied Mechanics, 2016, 8(2): 1650015. doi: 10.1142/S1758825116500150
    [15]
    Abu-Okail M, Nafea M, Ghanem M A, et al. Damage mechanism evaluation of polymer matrix composite reinforced with glass fiber via modified Arcan test specimens[J]. Journal of Failure Analysis and Prevention, 2021, 21(2): 451−461. doi: 10.1007/s11668-020-01078-3
    [16]
    Hasanpour R, Choupani N. Rock fracture characterization using the modified Arcan test specimen[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(2): 346−354. doi: 10.1016/j.ijrmms.2008.07.004
    [17]
    Rhême M, Botsis J, Cugnoni J, et al. Mixed mode fracture behavior of welded wood joints investigated with the Arcan test[J]. Wood Science and Technology, 2015, 50(1): 53−69.
    [18]
    Pitti R M, Dubois F, Pop O. A proposed mixed-mode fracture specimen for wood under creep loadings[J]. International Journal of Fracture, 2011, 167(2): 195−209. doi: 10.1007/s10704-010-9544-z
    [19]
    Méité M, Dubois F, Pop O, et al. Mixed mode fracture properties characterization for wood by digital images correlation and finite element method coupling[J]. Engineering Fracture Mechanics, 2013, 105: 86−100. doi: 10.1016/j.engfracmech.2013.01.008
    [20]
    El-Hajjar R F. Experimental study and analytical modeling of translayer fracture in pultruded FRP composites[M]. Atlanta: Georgia Institute of Technology, 2004.
    [21]
    邵卓平, 吴贻军, 王福利. 竹材横向断裂的物理模型与能量吸收机制: 基本组织开裂与界面脱粘[J]. 林业科学, 2012, 48(7): 108−113. doi: 10.11707/j.1001-7488.20120718

    Shao Z P, Wu Y J, Wang F L. The physical model and energy absorbing mechanism of bamboo transverse fracture: the cracking of parenchyma tissue and layering of interface[J]. Scientia Silvae Sinicae, 2012, 48(7): 108−113. doi: 10.11707/j.1001-7488.20120718
    [22]
    王福利, 王献轲, 周佳硕, 等. 竹材薄壁组织拉伸性能及其变异规律的研究[J]. 北京林业大学学报, 2020, 42(11): 130−137. doi: 10.12171/j.1000-1522.20200203

    Wang F L, Wang X K, Zhou J S, et al. Tensile properties and its variation pattern of bamboo parenchyma[J]. Journal of Beijing Forestry University, 2020, 42(11): 130−137. doi: 10.12171/j.1000-1522.20200203
    [23]
    Balcıoğlu H E, Yalçın D. The determination of fracture characterization of knitted fabric reinforced composites using Arcan test[J]. Fibers and Polymers, 2020, 21(4): 849−863. doi: 10.1007/s12221-020-9619-z
    [24]
    Wu E M. Application of fracture mechanics to anisotropic plates[J]. Journal of Applied Mechanics, 1967, 34(4): 967−974. doi: 10.1115/1.3607864
    [25]
    Jurf R A, Pipes R B. Interlaminar fracture of composite materials[J]. Journal of Composite Materials, 1982, 16(5): 386−394. doi: 10.1177/002199838201600503
  • Related Articles

    [1]Li Zhenrui, Li Yunqi, Lin Lanying, Liu Xing’e. Fracture behavior of wood bonding interface based on fiber pull-out test[J]. Journal of Beijing Forestry University, 2023, 45(6): 117-126. DOI: 10.12171/j.1000-1522.20230054
    [2]Chai Yuan, Tao Xin, Liang Shanqing, Fu Feng. Preparation and property characterization of crack-filled type microwave puffed wood based metal composites[J]. Journal of Beijing Forestry University, 2021, 43(10): 118-125. DOI: 10.12171/j.1000-1522.20210209
    [3]REN Wen-han, ZHANG Dan, WANG Ge, LI Wen-yan, CHENG Hai-tao. Mechanical and thermal properties of bamboo filler-high density polyethylene composites[J]. Journal of Beijing Forestry University, 2014, 36(4): 133-140. DOI: 10.13332/j.cnki.jbfu.2014.04.001
    [4]ZHAO Jun-shi, XU Zheng-dong, WANG Jin-lin, ZHANG Shuang-bao. Influence of fiber-glass on mechanical properties of composite laminates.[J]. Journal of Beijing Forestry University, 2014, 36(2): 129-132.
    [5]LIU Xiao-guang, JI Xiao-dong, ZHAO Hong-hua, CHEN Li-hua, MA Lei. Tribological properties between roots of Pinus tabuliformis and soil[J]. Journal of Beijing Forestry University, 2012, 34(6): 63-67.
    [6]TIAN Zhen-nong, ZHANG Le-wen. Macro-mechanical model and fracture mechanism of wood.[J]. Journal of Beijing Forestry University, 2010, 32(2): 153-156.
    [7]GUO Wen-jing, BAO Fu-cheng, WANG Zheng.. Effects of compounding modes on structure and properties of wood fiberpoly(lactic acid) biocomposites.[J]. Journal of Beijing Forestry University, 2009, 31(4): 106-111.
    [8]JIANG Jian-xin, YANG Zhong-kai, ZHU Li-wei, SHI Li-min, YAN Li-jie. Structure and property of bamboo fiber[J]. Journal of Beijing Forestry University, 2008, 30(1): 128-132.
    [9]XUE Zhen-hua, , ZHAO Guang-jie. Crystal properties of montmorilonitewood composite[J]. Journal of Beijing Forestry University, 2008, 30(1): 114-118.
    [10]CAO Jian-sheng, ZHANG Wan-jun, LIU Chang-ming, YANG Yong-hui. Fractured rock seepage characteristics and its impact on slope stability[J]. Journal of Beijing Forestry University, 2007, 29(4): 136-142. DOI: 10.13332/j.1000-1522.2007.04.028
  • Cited by

    Periodical cited type(3)

    1. 孙永平,于新栋,柴希娟,徐开蒙,解林坤. 低熔点合金高低温循环浸渍杨木的性能及机理研究. 林产工业. 2024(04): 1-6 .
    2. 韦溶军,王志闯,王雪纯,王婷欢,王振宇,何正斌,伊松林. 锡铋合金/肉豆蔻酸制备具有金属外壳的储能木材. 北京林业大学学报. 2024(08): 25-33 . 本站查看
    3. 陶鑫,田东雪,梁善庆,李善明,彭立民,傅峰. 微波膨化木基金属复合材料的涂饰性能及耐光老化研究. 北京林业大学学报. 2023(10): 140-148 . 本站查看

    Other cited types(0)

Catalog

    Article views (619) PDF downloads (42) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return