Citation: | Chai Yuan, Tao Xin, Liang Shanqing, Fu Feng. Preparation and property characterization of crack-filled type microwave puffed wood based metal composites[J]. Journal of Beijing Forestry University, 2021, 43(10): 118-125. DOI: 10.12171/j.1000-1522.20210209 |
[1] |
徐恩光, 林兰英, 李善明, 等. 木材微波处理技术与应用进展[J]. 木材工业, 2020, 34(1):25−29, 34.
Xu E G, Lin L Y, Li S M, et al. Wood microwave treatment technology and its applications[J]. China Wood Industry, 2020, 34(1): 25−29, 34.
|
[2] |
Torgovnikov G, Vinden P. Microwave wood modification technology and its applications[J]. Forest Products Journal, 2010, 60(2): 173−182. doi: 10.13073/0015-7473-60.2.173
|
[3] |
浙江富得利木业有限公司. 膨化基材: Q/FDL 001—2017[S]. 绍兴: 浙江富得利木业有限公司, 2017.
Zhejiang Fudeli Flooring Co., Ltd. Puffed wood: Q/FDL 001—2017[S]. Shaoxing: Zhejiang Fudeli Flooring Co., Ltd., 2017.
|
[4] |
Muga M O. Mechanical properties of wood following microwave and resin modification[D]. Melbourne: University of Melbourne, 2002.
|
[5] |
Pan Y F, Yin D W, Yu X F, et al. Multilayer-structured wood electroless Cu-Ni composite coatings for electromagnetic interference shielding[J]. Coatings, 2020, 10(8): 740. doi: 10.3390/coatings10080740
|
[6] |
Luo W, Zhang Y, Xu S M, et al. Encapsulation of metallic Na in an electrically conductive host with porous channels as a highly stable Na metal anode[J]. Nano Letters, 2017, 17(6): 3792. doi: 10.1021/acs.nanolett.7b01138
|
[7] |
Ge X, Zhang J Y, Zhang G Q, et al. Low melting-point alloy-boron nitride nanosheet composites for thermal management[J]. ACS Applied Nano Materials, 2020, 3(4): 3494−3502. doi: 10.1021/acsanm.0c00223
|
[8] |
Huang Z W, Luo Z G, Gao X N, et al. Preparation and thermal property analysis of wood’s alloy/expanded graphite composite as highly conductive form-stable phase change material for electronic thermal management[J]. Applied Thermal Engineering, 2017, 122: 322−329. doi: 10.1016/j.applthermaleng.2017.04.154
|
[9] |
Wan J Y, Song J W, Yang Z, et al. Highly anisotropic conductors[J]. Advanced Materials, 2017, 29(41): 1703331. doi: 10.1002/adma.201703331
|
[10] |
Chai Y, Liang S Q, Zhou Y D, et al. Low-melting-point alloy integration into puffed wood for improving mechanical and thermal properties of wood-metal functional composites[J]. Wood Science and Technology, 2020(54): 637−649.
|
[11] |
秦理哲, 林兰英, 傅峰. 木材胶合界面微观结构样品制备新方法—激光烧蚀技术[J]. 林业科学, 2018, 54(4):93−99. doi: 10.11707/j.1001-7488.20180411
Qin L Z, Lin L Y, Fu F. Novel sample preparation methodology of wood/adhesive interphase for microstructure study: laser ablation technique[J]. Scientia Silvae Sinicae, 2018, 54(4): 93−99. doi: 10.11707/j.1001-7488.20180411
|
[12] |
Islam M S, Hamdan S, Hasan M, et al. Effect of coupling reactions on the mechanical and biological properties of tropical wood polymer composites (WPC)[J]. International Biodeterioration and Biodegradation, 2012, 72: 108−113. doi: 10.1016/j.ibiod.2012.05.019
|
[13] |
Cai X L, Riedl B, Zhang S Y, et al. The impact of the nature of nanofillers on the performance of wood polymer nanocomposites[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(5): 727−737. doi: 10.1016/j.compositesa.2008.02.004
|
[14] |
周志芳, 江涛, 王清文. 高强度微波处理对落叶松木材力学性质的影响[J]. 东北林业大学学报, 2007, 35(2):7−8. doi: 10.3969/j.issn.1000-5382.2007.02.003
Zhou Z F, Jiang T, Wang Q W. Influence of intensive microwave treatment on mechanical properties of larch wood[J]. Journal of Northeast Forestry University, 2007, 35(2): 7−8. doi: 10.3969/j.issn.1000-5382.2007.02.003
|
[15] |
Menard K P, Menard N R. Dynamic mechanical analysis[M]. Boca Raton: CRC Press, 2020.
|
[16] |
史蔷, 鲍甫成, 江京辉, 等. 热处理圆盘豆木材的热分析研究[J]. 木材加工机械, 2012(2):26−30.
Shi Q, Bao F C, Jiang J H, et al. The thermal analysis of the heat-treated okan wood[J]. Wood Processing Machinery, 2012(2): 26−30.
|
[17] |
Sun L C, Wu Q L, Xie Y J, et al. Thermal degradation and flammability properties of multilayer structured wood fiber and polypropylene composites with fire retardants[J]. RSC Advance, 2016, 6(17): 13890−13897. doi: 10.1039/C5RA23262G
|
[18] |
江泽慧, 费本华, 杨忠. 光谱预处理对近红外光谱预测木材纤维素结晶度的影响[J]. 光谱学与光谱分析, 2007, 27(3):435−438. doi: 10.3321/j.issn:1000-0593.2007.03.006
Jiang Z H, Fei B H, Yang Z. Effects of spectral pretreatment on the prediction of crystallinity of wood cellulose using near infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2007, 27(3): 435−438. doi: 10.3321/j.issn:1000-0593.2007.03.006
|
[19] |
Tjeerdsma B F, Militz H. Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood[J]. Holz Roh Werkst, 2005, 63(2): 102−111. doi: 10.1007/s00107-004-0532-8
|
[20] |
Popescu M C, Froidevaux J, Navi P, et al. Structural modifications of Tilia cordata wood during heat treatment investigated by FT-IR and 2D IR correlation spectroscopy[J]. Journal of Molecular Structure, 2013, 1033: 176−186. doi: 10.1016/j.molstruc.2012.08.035
|
[21] |
Herrera R, Erdocia X, Llano-Ponte R, et al. Characterization of hydrothermally treated wood in relation to changes on its chemical composition and physical properties[J]. Journal of Analytical and Applied Pyrolysis, 2014, 107: 256−266. doi: 10.1016/j.jaap.2014.03.010
|
[22] |
Esteves B, Velez M A, Domingos I, et al. Chemical changes of heat treated pine and eucalypt wood monitored by FTIR[J]. Maderas Ciencia Y Tecnlogía, 2013, 15(2): 245−258.
|
[23] |
Okon K E, Lin F, Lin X, et al. Modification of Chinese fir (Cunninghamia lanceolata L.) wood by silicone oil heat treatment with micro-wave pretreatment[J]. European Journal of Wood and Wood Products, 2018, 76(1): 221−228. doi: 10.1007/s00107-017-1165-z
|
[24] |
刘元. 热处理对水与木材接触角的影响[J]. 中南林业科技大学学报, 1993, 13(2):136−141.
Liu Y. The impact of heat treatment on the contact angle between wood and water[J]. Journal of Central South University of Forestry and Technology, 1993, 13(2): 136−141.
|
[1] | Chen Dongsheng, Wu Chunyan, Xie Yunhui, Jin Yingbo, Zhang Yang, Sun Xiaomei. Microfibril angle prediction of Larix kaempferi based on genetic effects and climate variables[J]. Journal of Beijing Forestry University, 2024, 46(7): 44-54. DOI: 10.12171/j.1000-1522.20230063 |
[2] | Li Xin, Zhong Tuhua, Chen Hong, Li Jingjing. Chemical composition and thermal stability of cells in different structures of Phyllostachys edulis[J]. Journal of Beijing Forestry University, 2023, 45(8): 156-162. DOI: 10.12171/j.1000-1522.20230104 |
[3] | ZHANG Feng, ZHANG Li, QI Chu-sheng, ZHANG Yang, MU Jun. Effects of pretreatment methods on properties of corn straw board[J]. Journal of Beijing Forestry University, 2017, 39(9): 112-118. DOI: 10.13332/j.1000-1522.20170069 |
[4] | LIU Zhi, CAO Jin-zhen. Study on hydrophobic characteristics of wood surface modified by a silica/silicone oil complex emulsion combined with thermal post-treatment[J]. Journal of Beijing Forestry University, 2017, 39(7): 103-110. DOI: 10.13332/j.1000-1522.20170087 |
[5] | XU Kang, L Jian-xiong, LI Xian-jun, WU Yi-qiang. Effect of heat treatment on dimensional stability of phenolic resin impregnated poplar wood.[J]. Journal of Beijing Forestry University, 2015, 37(9): 70-77. DOI: 10.13332/j.1000-1522.20150019 |
[6] | JIANG Ze鄄hui, CHEN Fu鄄ming, WANG Ge, LIU Xing鄄e, CHENG Hai鄄tao.. Surface energy characterization of bamboo fiber determined by dynamic contact angle analysis.[J]. Journal of Beijing Forestry University, 2013, 35(3): 143-148. |
[7] | CHEN Hong, WANG Ge, CHENG Hai-tao, CAO Shuang-ping, GAO Jie. Effects of different chemical maceration methods on the surface wetting properties and section shapes of single bamboo fibers.[J]. Journal of Beijing Forestry University, 2011, 33(1): 115-118. |
[8] | TIAN Gen-lin, YU Yan, WANG Ge, CHENG Hai-tao, LU Fang.. Preliminary study on super-hydrophobic modification of bamboo.[J]. Journal of Beijing Forestry University, 2010, 32(3): 166-169. |
[9] | WANG Ge, YU Yang-lun, YU Wen-ji. Effects of temperature on the dynamic adhesive wettability of PF resin on bamboo surface[J]. Journal of Beijing Forestry University, 2007, 29(3): 149-153. DOI: 10.13332/j.1000-1522.2007.03.024 |
[10] | CAO Jin-zhen, D.Pascal Kamdem. Surface energy of wood treated with water-borne wood preservatives[J]. Journal of Beijing Forestry University, 2006, 28(4): 1-5. |
1. |
孙永平,于新栋,柴希娟,徐开蒙,解林坤. 低熔点合金高低温循环浸渍杨木的性能及机理研究. 林产工业. 2024(04): 1-6 .
![]() | |
2. |
韦溶军,王志闯,王雪纯,王婷欢,王振宇,何正斌,伊松林. 锡铋合金/肉豆蔻酸制备具有金属外壳的储能木材. 北京林业大学学报. 2024(08): 25-33 .
![]() | |
3. |
陶鑫,田东雪,梁善庆,李善明,彭立民,傅峰. 微波膨化木基金属复合材料的涂饰性能及耐光老化研究. 北京林业大学学报. 2023(10): 140-148 .
![]() |