• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Chai Yuan, Tao Xin, Liang Shanqing, Fu Feng. Preparation and property characterization of crack-filled type microwave puffed wood based metal composites[J]. Journal of Beijing Forestry University, 2021, 43(10): 118-125. DOI: 10.12171/j.1000-1522.20210209
Citation: Chai Yuan, Tao Xin, Liang Shanqing, Fu Feng. Preparation and property characterization of crack-filled type microwave puffed wood based metal composites[J]. Journal of Beijing Forestry University, 2021, 43(10): 118-125. DOI: 10.12171/j.1000-1522.20210209

Preparation and property characterization of crack-filled type microwave puffed wood based metal composites

More Information
  • Received Date: June 02, 2021
  • Revised Date: June 21, 2021
  • Available Online: August 08, 2021
  • Published Date: October 29, 2021
  •   Objective  To achieve the value-added utilization of wood after high energy density microwave treatment, crack-filled type microwave puffed wood based metal composites (WMC) was prepared, which provided a reference for the efficient utilization of planted solid wood treated by microwave.
      Method  Tin-bismuth low melting point alloy (LMA) was used to impregnate microwave puffed Pinus radiata wood to prepare WMC by vacuum impregnation method. The micro-morphology, thermal stability, surface contact angle and other properties of WMC were characterized and analyzed by SEM, EDS, CT, DMA, TG, DSC, XRD, FTIR, etc. Meanwhile, the compound mechanism of LMA and microwave puffed wood was discussed.
      Result  LMA was filled in the cracks of the microwave puffed wood and formed a mechanical interlocking meshing structure with wood, making it tightly combined at the cracks and improving the interface bonding strength. The mass percentages of Sn and Bi in WMC were 25.97% and 31.13%, respectively. The CT scan image reconstructed the spatial distribution of LMA in WMC, realized three-dimensional rendering of WMC visualization, and showed its unique texture. Compared with the untreated wood sample, WMC had higher storage modulus, loss modulus and char yield, and the thermal stability was improved. In addition, there were no new functional group characteristic peaks such as esters and ethers in WMC. The crystal structure of WMC was not destroyed, and the crystallinity of WMC showed an upward trend, increasing from 25.9% of the untreated wood sample to 38.6%. The surface contact angle was 172% higher than that of the untreated wood sample at 60 s, and the hydrophobicity was significantly improved.
      Conclusion  In this study, a crack-filled microwave puffed wood based metal composites was prepared, the distribution of tin-bismuth alloy in microwave puffed wood was observed and modeled, and thermal stability and surface contact angle were characterized, which provided a new idea for the development of new wood products based on high energy density microwave treatment of wood.
  • [1]
    徐恩光, 林兰英, 李善明, 等. 木材微波处理技术与应用进展[J]. 木材工业, 2020, 34(1):25−29, 34.

    Xu E G, Lin L Y, Li S M, et al. Wood microwave treatment technology and its applications[J]. China Wood Industry, 2020, 34(1): 25−29, 34.
    [2]
    Torgovnikov G, Vinden P. Microwave wood modification technology and its applications[J]. Forest Products Journal, 2010, 60(2): 173−182. doi: 10.13073/0015-7473-60.2.173
    [3]
    浙江富得利木业有限公司. 膨化基材: Q/FDL 001—2017[S]. 绍兴: 浙江富得利木业有限公司, 2017.

    Zhejiang Fudeli Flooring Co., Ltd. Puffed wood: Q/FDL 001—2017[S]. Shaoxing: Zhejiang Fudeli Flooring Co., Ltd., 2017.
    [4]
    Muga M O. Mechanical properties of wood following microwave and resin modification[D]. Melbourne: University of Melbourne, 2002.
    [5]
    Pan Y F, Yin D W, Yu X F, et al. Multilayer-structured wood electroless Cu-Ni composite coatings for electromagnetic interference shielding[J]. Coatings, 2020, 10(8): 740. doi: 10.3390/coatings10080740
    [6]
    Luo W, Zhang Y, Xu S M, et al. Encapsulation of metallic Na in an electrically conductive host with porous channels as a highly stable Na metal anode[J]. Nano Letters, 2017, 17(6): 3792. doi: 10.1021/acs.nanolett.7b01138
    [7]
    Ge X, Zhang J Y, Zhang G Q, et al. Low melting-point alloy-boron nitride nanosheet composites for thermal management[J]. ACS Applied Nano Materials, 2020, 3(4): 3494−3502. doi: 10.1021/acsanm.0c00223
    [8]
    Huang Z W, Luo Z G, Gao X N, et al. Preparation and thermal property analysis of wood’s alloy/expanded graphite composite as highly conductive form-stable phase change material for electronic thermal management[J]. Applied Thermal Engineering, 2017, 122: 322−329. doi: 10.1016/j.applthermaleng.2017.04.154
    [9]
    Wan J Y, Song J W, Yang Z, et al. Highly anisotropic conductors[J]. Advanced Materials, 2017, 29(41): 1703331. doi: 10.1002/adma.201703331
    [10]
    Chai Y, Liang S Q, Zhou Y D, et al. Low-melting-point alloy integration into puffed wood for improving mechanical and thermal properties of wood-metal functional composites[J]. Wood Science and Technology, 2020(54): 637−649.
    [11]
    秦理哲, 林兰英, 傅峰. 木材胶合界面微观结构样品制备新方法—激光烧蚀技术[J]. 林业科学, 2018, 54(4):93−99. doi: 10.11707/j.1001-7488.20180411

    Qin L Z, Lin L Y, Fu F. Novel sample preparation methodology of wood/adhesive interphase for microstructure study: laser ablation technique[J]. Scientia Silvae Sinicae, 2018, 54(4): 93−99. doi: 10.11707/j.1001-7488.20180411
    [12]
    Islam M S, Hamdan S, Hasan M, et al. Effect of coupling reactions on the mechanical and biological properties of tropical wood polymer composites (WPC)[J]. International Biodeterioration and Biodegradation, 2012, 72: 108−113. doi: 10.1016/j.ibiod.2012.05.019
    [13]
    Cai X L, Riedl B, Zhang S Y, et al. The impact of the nature of nanofillers on the performance of wood polymer nanocomposites[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(5): 727−737. doi: 10.1016/j.compositesa.2008.02.004
    [14]
    周志芳, 江涛, 王清文. 高强度微波处理对落叶松木材力学性质的影响[J]. 东北林业大学学报, 2007, 35(2):7−8. doi: 10.3969/j.issn.1000-5382.2007.02.003

    Zhou Z F, Jiang T, Wang Q W. Influence of intensive microwave treatment on mechanical properties of larch wood[J]. Journal of Northeast Forestry University, 2007, 35(2): 7−8. doi: 10.3969/j.issn.1000-5382.2007.02.003
    [15]
    Menard K P, Menard N R. Dynamic mechanical analysis[M]. Boca Raton: CRC Press, 2020.
    [16]
    史蔷, 鲍甫成, 江京辉, 等. 热处理圆盘豆木材的热分析研究[J]. 木材加工机械, 2012(2):26−30.

    Shi Q, Bao F C, Jiang J H, et al. The thermal analysis of the heat-treated okan wood[J]. Wood Processing Machinery, 2012(2): 26−30.
    [17]
    Sun L C, Wu Q L, Xie Y J, et al. Thermal degradation and flammability properties of multilayer structured wood fiber and polypropylene composites with fire retardants[J]. RSC Advance, 2016, 6(17): 13890−13897. doi: 10.1039/C5RA23262G
    [18]
    江泽慧, 费本华, 杨忠. 光谱预处理对近红外光谱预测木材纤维素结晶度的影响[J]. 光谱学与光谱分析, 2007, 27(3):435−438. doi: 10.3321/j.issn:1000-0593.2007.03.006

    Jiang Z H, Fei B H, Yang Z. Effects of spectral pretreatment on the prediction of crystallinity of wood cellulose using near infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2007, 27(3): 435−438. doi: 10.3321/j.issn:1000-0593.2007.03.006
    [19]
    Tjeerdsma B F, Militz H. Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood[J]. Holz Roh Werkst, 2005, 63(2): 102−111. doi: 10.1007/s00107-004-0532-8
    [20]
    Popescu M C, Froidevaux J, Navi P, et al. Structural modifications of Tilia cordata wood during heat treatment investigated by FT-IR and 2D IR correlation spectroscopy[J]. Journal of Molecular Structure, 2013, 1033: 176−186. doi: 10.1016/j.molstruc.2012.08.035
    [21]
    Herrera R, Erdocia X, Llano-Ponte R, et al. Characterization of hydrothermally treated wood in relation to changes on its chemical composition and physical properties[J]. Journal of Analytical and Applied Pyrolysis, 2014, 107: 256−266. doi: 10.1016/j.jaap.2014.03.010
    [22]
    Esteves B, Velez M A, Domingos I, et al. Chemical changes of heat treated pine and eucalypt wood monitored by FTIR[J]. Maderas Ciencia Y Tecnlogía, 2013, 15(2): 245−258.
    [23]
    Okon K E, Lin F, Lin X, et al. Modification of Chinese fir (Cunninghamia lanceolata L.) wood by silicone oil heat treatment with micro-wave pretreatment[J]. European Journal of Wood and Wood Products, 2018, 76(1): 221−228. doi: 10.1007/s00107-017-1165-z
    [24]
    刘元. 热处理对水与木材接触角的影响[J]. 中南林业科技大学学报, 1993, 13(2):136−141.

    Liu Y. The impact of heat treatment on the contact angle between wood and water[J]. Journal of Central South University of Forestry and Technology, 1993, 13(2): 136−141.
  • Related Articles

    [1]Niu Yunming, Jia Guodong, Liu Zihe, Wang Xin, Liu Ziqiang. Soil moisture absorption and utilization of Quercus variabilis in Beijing mountain area[J]. Journal of Beijing Forestry University, 2022, 44(7): 16-24. DOI: 10.12171/j.1000-1522.20210208
    [2]AN Hai-long, LIU Qing-qian, CAO Xue-hui, ZHANG Gang, WANG Hui, LIU Chao, GUO Hui-hong, XIA Xin-li, YIN Wei-lun. Absorption features of PAHs in leaves of common tree species at different PM2.5 polluted places[J]. Journal of Beijing Forestry University, 2016, 38(1): 59-66. DOI: 10.13332/j.1000--1522.20150164
    [3]QIN Jing, ZHAO Guang-jie, SHANG Jun-bo, PANG Jiu-yin. Electroconductivity and electromagnetic shielding effect of copper plating poplar veneers[J]. Journal of Beijing Forestry University, 2014, 36(6): 149-153. DOI: 10.13332/j.cnki.jbfu.2014.06.001
    [4]YU Lu, SU De-rong, LIU Yi-shan. Characters of leaf water absorption for three turfgrasses.[J]. Journal of Beijing Forestry University, 2013, 35(3): 97-101.
    [5]ZHANG Yun, CUI Xiao-yang. Nitrogen absorption and assimilation characteristics of Pinus koraiensis seedings in different NH+4/NO-3 ratios[J]. Journal of Beijing Forestry University, 2011, 33(5): 61-64.
    [6]ZHANG Yun, CUI Xiao-yang. NH+4/NO-3 absorption characteristics of Betula platyphylla seedlings[J]. Journal of Beijing Forestry University, 2011, 33(3): 26-30.
    [7]DONG Wen-yi, NIE Li-shui, LI Ji-yue, , SHEN Ying -bai, ZHANG Zhi-yi. Effects of nitrogen forms on the absorption and distribution of nitrogen in Populus tomentosa seedlings using the technique of 15N tracing.[J]. Journal of Beijing Forestry University, 2009, 31(4): 97-101.
    [8]ZHANG Xue-xia, CHEN Li-hua. . Effects of watershed landscape pattern on soil and water loss in the Loess Plateau Region.[J]. Journal of Beijing Forestry University, 2008, 30(supp.2): 95-102.
    [9]LI Suyan1, HUANG Yu2, ZHANG Jianguo. The effects of fir plantation thinning on soil and water loss.[J]. Journal of Beijing Forestry University, 2008, 30(3): 120-123.
    [10]ZHAI Ming-pu, JIANG San-nai. Dynamics of nutrient absorption in root systems of Populus×xiao zhuanica and Robinia pseudoacacia[J]. Journal of Beijing Forestry University, 2006, 28(2): 29-33.
  • Cited by

    Periodical cited type(9)

    1. 王喜刚,郭成瑾,焦杨,赵沛,田静,张丽荣,沈瑞清. 哈茨木霉M-17厚垣孢子可湿性粉剂的研制及其对马铃薯干腐病的田间防效. 中国生物防治学报. 2024(06): 1319-1330 .
    2. 申云鑫,李铭刚,施竹凤,赵江源,王楠,李者芬,杨明英,陈齐斌,杨佩文. 贝莱斯芽胞杆菌SH-1471可湿性粉剂研制及其对番茄枯萎病的防治效果. 中国生物防治学报. 2023(04): 904-914 .
    3. 薛德星,李美,高兴祥,李健. 生防菌棘孢木霉的分离鉴定及生物学特性研究. 山东农业科学. 2023(10): 118-123 .
    4. 张成,李欣雨,邹艺琴,王睿,侯巨梅,廖文敏,刘铜. 木霉菌Trichoderma brev可湿性粉剂的研制. 农药. 2022(05): 329-335 .
    5. 胡建坤,黄蓉,黄瑞荣,朱植银,王玉,曾钦华. 2种化学杀菌剂与木霉及其组配制剂对辣椒疫病防控效果研究. 生物灾害科学. 2021(04): 460-464 .
    6. 庄新亚,程亮,郭青云. 燕麦镰刀菌GD-2可湿性粉剂研制及对野燕麦的防除效果. 青海大学学报. 2020(03): 9-17+43 .
    7. 遇文婧,宋小双,邓勋,平晓帆,周琦,刘志华. 刺激植物响应蛋白基因Epl1克隆、原核表达及功能初探. 北京林业大学学报. 2018(01): 17-26 . 本站查看
    8. 徐沛东,朱植银,黄加诚,肖永良,谢远芳,魏方林. 新型生物农药棘孢木霉菌防治辣椒疫病应用研究. 生物灾害科学. 2017(03): 172-175 .
    9. 罗洋,滕应,罗绪强,李振高. 里氏木霉FS10-C可湿性粉剂的研制及其促生效果测定. 生物技术通报. 2016(08): 194-199 .

    Other cited types(8)

Catalog

    Article views PDF downloads Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return