Citation: | Ji Yongjie, Xu Kunpeng, Zhang Wangfei, Shi Jianmin, Zhang Fuxiang. Comparative analysis of forest biomass retrieval from water cloud model (WCM) of polarized SAR data with different wavelengths[J]. Journal of Beijing Forestry University, 2023, 45(2): 24-33. DOI: 10.12171/j.1000-1522.20220006 |
[1] |
罗环敏. 基于极化干涉SAR的森林结构信息提取模型与方法[D]. 成都: 电子科技大学, 2011.
Luo H M. Models and methods of extracting forest structure information by polarmetric SAR interferometry[D]. Chengdu: University of Electronic Science and Technology of China, 2011.
|
[2] |
West P W. Tree and forest measurement[M]. Berlin: Springer Nature, 2004.
|
[3] |
Chen L, Wang Y, Ren C, et al. Assessment of multi-wavelength SAR and multispectral instrument data for forest aboveground biomass mapping using random forest kriging[J]. Forest Ecology and Management, 2019, 447: 12−25. doi: 10.1016/j.foreco.2019.05.057
|
[4] |
Toan T L, Beaudoin A, Riom J, et al. Relating forest biomass to SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(2): 403−411. doi: 10.1109/36.134089
|
[5] |
陈尔学. 合成孔径雷达森林生物量估测研究进展[J]. 世界林业研究, 1999, 12(6): 18−23.
Chen E X. Development of forest biomass estimation using SAR data[J]. World Forestry Research, 1999, 12(6): 18−23.
|
[6] |
姬永杰, 张王菲. 森林地上生物量合成孔径雷达技术反演研究综述[J]. 世界林业研究, 2022, 35(3): 32−39.
Ji Y J, Zhang W F. Review on retrieval of forest aboveground biomass by SAR technology[J]. World Forestry Research, 2022, 35(3): 32−39.
|
[7] |
李云, 张王菲, 崔鋆波, 等. 参数优选支持的光学与SAR数据森林地上生物量反演研究[J]. 北京林业大学学报, 2020, 42(10): 11−19.
Li Y, Zhang W F, Cui J B, et al. Inversion exploration on forest aboveground biomass of optical and SAR data supported by parameter optimization method[J]. Journal of Beijing Forestry University, 2020, 42(10): 11−19.
|
[8] |
史建敏, 张王菲, 曾鹏, 等. 联合GF-1和GF-3影像的森林地上生物量反演[J]. 北京林业大学学报, 2022, 44(11): 70−81.
Shi J M, Zhang W F, Zeng P, et al. Inversion of forest aboveground biomass from combined images of GF-1 and GF-3[J]. Journal of Beijing Forestry University, 2022, 44(11): 70−81.
|
[9] |
Attema E, Ulaby F T. Vegetation modeled as a water cloud[J]. Radio Science, 1978, 13(2): 357−364. doi: 10.1029/RS013i002p00357
|
[10] |
杨贵军, 岳继博, 李长春, 等. 基于改进水云模型和Radarsat-2数据的农田土壤含水量估算[J]. 农业工程学报, 2016, 32(22): 146−153.
Yang G J, Yue J B, Li C H, et al. Estimation of soil moisture in farmland using improved water cloud model and Radarsat-2 data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(22): 146−153.
|
[11] |
张智宏. 基于极化SAR的小麦倒伏灾害与长势监测研究[D]. 西安: 西安科技大学, 2017.
Zhang Z H. Research on wheat condition and growth monitoring based on compact polarimetric SAR[D]. Xi’an: Xi’an University of Science and Technology, 2017.
|
[12] |
Hosseini M, Mcnairn H, Mitchell S, et al. A comparison between support vector machine and water cloud model for estimating crop leaf area index[J/OL]. Remote Sensing, 2021, 13(7): 1348[2021−03−01]. https://doi.org/10.3390/rs13071348.
|
[13] |
Santoro M, Askne J, Eriksson L, et al. Seasonal dynamics and stem volume retrieval in boreal forests using JERS-1 backscatter[C]. Proceedings of SPIE. Berlin: the International Society for Optical Engineering, 2003.
|
[14] |
戴玉芳, 凌飞龙. 水云模型于L波段SAR和中国北方森林的适用性分析[J]. 遥感信息, 2013, 28(4): 44−49.
Dai Y F, Ling F L. Suitability analysis of water cloud model for L-band synthetic aperture radar to forest in northeast China[J]. Remote Sensing Information, 2013, 28(4): 44−49.
|
[15] |
Askne J I H, Dammert P B G, Ulander L M H, et al. C-band repeat-pass interferometric SAR observations of the forest[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35: 25−35. doi: 10.1109/36.551931
|
[16] |
Cartus O, Santoro M, Kellndorfer J. Mapping forest aboveground biomass in the Northeastern United States with ALOS PALSAR dual-polarization L-band[J]. Remote Sensing of Environment, 2012, 124: 466−478. doi: 10.1016/j.rse.2012.05.029
|
[17] |
Santoro M, Eriksson L E B, Fransson J E S. Reviewing ALOS PALSAR backscatter observations for stem volume retrieval in swedish forest[J]. Remote Sensing, 2015, 7(4): 4290−4317. doi: 10.3390/rs70404290
|
[18] |
Santoro M, Cartus O. Research pathways of forest above-ground biomass estimation based on SAR backscatter and interferometric SAR observations[J/OL]. Remote Sensing, 2018, 10(4): 608[2018−04−01]. https://doi.org/10.3390/rs10040608.
|
[19] |
Santoro M, Beer C, Cartus O, et al. Retrieval of growing stock volume in boreal forest using hyper-temporal series of Envisat ASAR ScanSAR backscatter measurements[J]. Remote Sensing of Environment, 2011, 115: 490−507. doi: 10.1016/j.rse.2010.09.018
|
[20] |
张伟伦, 张延成, 范文义, 等. 干涉水云模型对不同极化方式哨兵数据估测森林生物量的精度比较[J]. 东北林业大学学报, 2020, 48(11): 27−32.
Zhang W L, Zhang Y C, Fan W Y, et al. Comparison of biomass accuracy with different polarization data with interferometric water cloud model[J]. Journal of Northeast Forestry University, 2020, 48(11): 27−32.
|
[21] |
穆喜云. 森林地上生物量遥感估测方法研究[D]. 呼和浩特: 内蒙古农业大学, 2015.
Mu X Y. A study on the estimating method of forest above ground biomass based on remote sensing data[D]. Hohhot: Inner Mongolia Agricultural University, 2015.
|
[22] |
冯琦, 陈尔学, 李增元, 等. 基于机载P波段全极化SAR数据的复杂地形森林地上生物量估测方法[J]. 林业科学, 2016, 52(3): 10−22.
Feng Q, Chen E X, Li Z Y, et al. Forest above-ground biomass estimation method of rugged terrain based on airborne P-band PolSAR data[J]. Scientia Silvae Sinicae, 2016, 52(3): 10−22.
|
[23] |
Pulliainen J, Heiska K, Hyyppae J, et al. Backscattering properties of boreal forests at C and X-band[J]. Ieee Transactions on Geoscience and Remote Sensing, 1994, 32(5): 1041−1050. doi: 10.1109/36.312892
|
[24] |
Cartus O, Santoro M. Exploring combinations of multi-temporal and multi-frequency radar backscatter observations to estimate above-ground biomass of tropical forest[J/OL]. Remote Sensing of Environment, 2019, 232: 111313[2022−07−01]. https://doi.org/10.1016/j.rse.2019.111313.
|
[25] |
Kumar S, Pandey U, Kushwaha S P, et al. Aboveground biomass estimation of tropical forest from Envisat advanced synthetic aperture radar data using modeling approach[J/OL]. Journal of Applied Remote Sensing, 2012, 6(1): 063588[2021−10−12]. https://doi.org/10.1117/1.JRS.6.063588.
|
[1] | Zhou Lai, Cheng Xiaofang, Zhang Mengtao. Model construction of Larix principis-rupprechtii canopy volume and surface area based on BP neural network[J]. Journal of Beijing Forestry University, 2024, 46(8): 94-100. DOI: 10.12171/j.1000-1522.20230166 |
[2] | Shi Jianmin, Zhang Wangfei, Zeng Peng, Zhao Lixian, Wang Mengjin. Inversion of forest aboveground biomass from combined images of GF-1 and GF-3[J]. Journal of Beijing Forestry University, 2022, 44(11): 70-81. DOI: 10.12171/j.1000-1522.20220029 |
[3] | Tian Xiaomin, Zhang Xiaoli. Estimation of forest aboveground biomass by remote sensing[J]. Journal of Beijing Forestry University, 2021, 43(8): 137-148. DOI: 10.12171/j.1000-1522.20200166 |
[4] | Li Yun, Zhang Wangfei, Cui Junbo, Li Chunmei, Ji Yongjie. Inversion exploration on forest aboveground biomass of optical and SAR data supported by parameter optimization method[J]. Journal of Beijing Forestry University, 2020, 42(10): 11-19. DOI: 10.12171/j.1000-1522.20190389 |
[5] | Li Ming-ze, Yu Xin-tong, Gao Yuan-ke, Fan Wen-yi. Remote sensing quantification on forest biomass based on SAR polarization decomposition and Landsat data[J]. Journal of Beijing Forestry University, 2018, 40(2): 1-10. DOI: 10.13332/j.1000-1522.20170284 |
[6] | LOU Xin, GU Yan, ZHANG Jun-hui, HAN Shi-jie. Effects of snow cover and freeze-thaw cycles on stability of surface soil aggregates in forest[J]. Journal of Beijing Forestry University, 2016, 38(4): 63-70. DOI: 10.13332/j.1000-1522.20150435 |
[7] | LI Chun-mei, ZHANG Wang-fei, LI Zeng-yuan, CHEN Er-xue, TIAN Xin. Retrieval of forest above-ground biomass using multi-source data in Genhe, Inner Mongolia[J]. Journal of Beijing Forestry University, 2016, 38(3): 64-72. DOI: 10.13332/j.1000-1522.20150209 |
[8] | ZHANG Zhi, TIAN Xin, CHEN Er-xue, HE Qi-sheng. Review of methods on estimating forest above ground biomass[J]. Journal of Beijing Forestry University, 2011, 33(5): 144-150. |
[9] | LIU Zeng-wen, DUAN Er-jun, LIU Zhuo-majie, FENG Shun-yu.. Soil polarization under pure stands of planted forests in the semiarid, windblown sand region of northern Shaanxi Province, northwestern China[J]. Journal of Beijing Forestry University, 2009, 31(2): 1-9. |
[10] | ZHANG Jun-mei, LI Wen-bin, SA Chao, WANG De-ming. Power control system of remote control pruning robot for standing trees[J]. Journal of Beijing Forestry University, 2007, 29(4): 22-26. DOI: 10.13332/j.1000-1522.2007.04.006 |
1. |
赵钰婷,陈冬瑶,杨柳,李晶楠,宁广亮,姜静. 白桦四倍体×紫雨桦二倍体杂交种子活力及杂种子代生长特性分析. 温带林业研究. 2025(01): 1-8 .
![]() | |
2. |
任亚超,张军,王进茂,杨敏生. 科研反哺教学在林木育种学教学中的探索与实践. 安徽农业科学. 2024(10): 278-282 .
![]() | |
3. |
杨琦,王湘莹,王晓明,乔中全,唐丽. 大花紫薇ב丹红紫叶’紫薇杂交F_1代不育株转录组测序. 东北林业大学学报. 2024(09): 25-29 .
![]() | |
4. |
赵一帆,孔博,程雪桐,李亮,凌傲宇,李智群,康向阳,张平冬. 赤霉素喷洒处理诱导新疆杨2n花粉产生及其对微管骨架的影响. 北京林业大学学报. 2023(01): 40-50 .
![]() | |
5. |
李智群,孔博,程雪桐,李亮,张平冬. 高温诱导银灰杨花粉败育的细胞学机理研究. 北京林业大学学报. 2023(05): 25-34 .
![]() | |
6. |
刘春洋,彭朝凤,程世平,姚鹏强,耿喜宁,谢丽华. 高温诱导‘凤丹’牡丹2n雌配子创制三倍体. 园艺学报. 2023(07): 1455-1466 .
![]() | |
7. |
刘宣晨,刘彩霞,张世凯,李开隆,曲冠证. 大青杨×小黑杨异源三倍体新种质创制. 东北林业大学学报. 2023(10): 19-27 .
![]() | |
8. |
周炳秀,刘勇,彭玉信,张劲,赵建松,朱轶超,赵巧玲,王硕,陶靖,孟路. 雄性毛白杨无性系苗期表型和生理变异的早期综合评价. 东北林业大学学报. 2023(11): 1-9 .
![]() | |
9. |
吴婷,贾瑞冬,杨树华,赵鑫,于晓南,国圆,葛红. 蝴蝶兰多倍体育种研究进展与展望. 园艺学报. 2022(02): 448-462 .
![]() | |
10. |
张新宇,董阳,王梦蕾,孙照斌. 银腺杨解剖及理化性能研究. 林业科技. 2022(05): 33-36 .
![]() | |
11. |
陈赢男,韦素云,曲冠正,胡建军,王军辉,尹佟明,潘惠新,卢孟柱,康向阳,李来庚,黄敏仁,王明庥. 现代林木育种关键核心技术研究现状与展望. 南京林业大学学报(自然科学版). 2022(06): 1-9 .
![]() |