Citation: | Zhang Jingxing, Ma Yanguang, Wang Huili, Liu Hongmei, Li Wei. Characteristics of JAZ gene family of Pinus tabuliformis and identification of functional domain of its interaction with DELLA protein[J]. Journal of Beijing Forestry University, 2022, 44(12): 12-22. DOI: 10.12171/j.1000-1522.20220027 |
[1] |
Mandaokar A, Thines B, Shin B, et al. Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling[J]. The Plant Journal, 2010, 46(6): 984−1008.
|
[2] |
Browse J. Jasmonate passes muster: a receptor and targets for the defense hormone[J]. Annual Review of Plant Biology, 2009, 60(1): 183−205. doi: 10.1146/annurev.arplant.043008.092007
|
[3] |
Zhang H T, Memelink J. Regulation of secondary metabolism by jasmonate hormones[J]. Plant-Derived Natural Products, 2009: 181−194. doi: 10.1007/978-0-387-85498-4_8
|
[4] |
Pauwels L, Morreel K, Witte E D, et al. Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured Arabidopsis cells[J]. PNAS, 2008, 105(4): 1380−1385. doi: 10.1073/pnas.0711203105
|
[5] |
Wasternack C. Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development[J]. Annals of Botany, 2007, 100(4): 681−697. doi: 10.1093/aob/mcm079
|
[6] |
Claus W, Miroslav S. Jasmonates: news on occurrence, biosynthesis, metabolism and action of an ancient group of signaling compounds[J]. International Journal of Molecular Sciences, 2018, 19(9): 2539−2564. doi: 10.3390/ijms19092539
|
[7] |
Sheard L B, Tan X, Mao H, et al. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor[J]. Nature, 2010, 468: 400−405. doi: 10.1038/nature09430
|
[8] |
Garrido-Bigotes A, Figueroa N E, Figueroa P M, et al. Jasmonate signaling pathway in strawberry: genome-wide identification, molecular characterization and expression of JAZs and MYCs during fruit development and ripening[J]. PLoS One, 2018, 13(5): e0197118. doi: 10.1371/journal.pone.0197118
|
[9] |
Neale D B, Wegrzyn J L, Stevens K A, et al. Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies[J]. Genome Biology, 2014, 15(3): R59. doi: 10.1186/gb-2014-15-3-r59
|
[10] |
Bai Y, Meng Y, Huang D, et al. Origin and evolutionary analysis of the plant-specific TIFY transcription factor family[J]. Genomics, 2011, 98(2): 128−136. doi: 10.1016/j.ygeno.2011.05.002
|
[11] |
Thireault C, Shyu C, Yoshida Y, et al. Repression of jasmonate signaling by a non-TIFY JAZ protein in Arabidopsis[J]. The Plant Journal, 2015, 82(4): 669−679. doi: 10.1111/tpj.12841
|
[12] |
Chini A, Fonseca S, Chico J M, et al. The ZIM domain mediates homo- and heteromeric interactions between Arabidopsis JAZ proteins[J]. The Plant Journal, 2009, 59(1): 77−87. doi: 10.1111/j.1365-313X.2009.03852.x
|
[13] |
Robson F, Costa M M, Hepworth S R, et al. Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants[J]. The Plant Journal, 2002, 28(6): 619−631. doi: 10.1046/j.1365-313x.2001.01163.x
|
[14] |
Staswick P E. JAZing up jasmonate signaling[J]. Trends in Plant Science, 2008, 13(2): 66−71. doi: 10.1016/j.tplants.2007.11.011
|
[15] |
Garrido-Bigotes A, Valenzuela-Riffo F, Figueroa C R. Evolutionary analysis of JAZ proteins in plants: an approach in search of the ancestral sequence[J]. International Journal of Molecular Sciences, 2019, 20(20): 5060−5080. doi: 10.3390/ijms20205060
|
[16] |
Moreno J E, Shyu C, Campos M L, et al. Negative feedback control of jasmonate signaling by an alternative splice variant of JAZ10[J]. Plant Physiology, 2013, 162(2): 1006−1017. doi: 10.1104/pp.113.218164
|
[17] |
Boter M, Golz J F, Giménez-Ibañez S, et al. FILAMENTOUS FLOWER is a direct target of JAZ3 and modulates responses to jasmonate[J]. The Plant Cell, 2015, 27(11): 3160−3174. doi: 10.1105/tpc.15.00220
|
[18] |
Huang Z, Jin S H, Guo H D, et al. Genome-wide identification and characterization of TIFY family genes in Moso bamboo (Phyllostachys edulis) and expression profiling analysis under dehydration and cold stresses[J/OL]. Peer Journal, 2016, [2016−10−27]. DOI: 10.7717/peerj.2620.
|
[19] |
Huot B, Yao J, Montgomery B L, et al. Growth–defense trade offs in plants: a balancing act to optimize fitness[J]. Molecular Plant, 2014, 7(8): 1267−1287. doi: 10.1093/mp/ssu049
|
[20] |
Major I T, Yoshida Y, Campos M L, et al. Regulation of growth-defense balance by the JASMONATE ZIM-DOMAIN (JAZ)-MYC transcriptional module[J]. New Phytologist, 2017, 215(4): 1533−1547. doi: 10.1111/nph.14638
|
[21] |
Cheng H, Song S, Xiao L, et al. Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in Arabidopsis[J]. PLoS Genetics, 2009, 5(3): e1000440. doi: 10.1371/journal.pgen.1000440
|
[22] |
Hong G J, Xue X Y, Mao Y B, et al. Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression[J]. The Plant Cell, 2012, 24(6): 2635−2648. doi: 10.1105/tpc.112.098749
|
[23] |
Song S, Qi T, Huang H, et al. The jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect jasmonate-regulated stamen development in Arabidopsis[J]. The Plant Cell, 2011, 23(3): 1000−1013. doi: 10.1105/tpc.111.083089
|
[24] |
Hou X, Lee Y, Xia K, et al. DELLAs modulate jasmonate signaling via competitive binding to JAZs[J]. Developmental Cell, 2010, 19(6): 884−894. doi: 10.1016/j.devcel.2010.10.024
|
[25] |
Yang D L, Yao J, Mei C S, et al. Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade[J]. Proceedings of the National Academy of Sciences, 2012, 109(19): E1192−E1200.
|
[26] |
Qi T, Huang H, Wu D, et al. Arabidopsis DELLA and JAZ proteins bind the WD-repeat/bHLH/MYB complex to modulate gibberellin and jasmonate signaling synergy[J]. The Plant Cell, 2014, 26(3): 1118−1133. doi: 10.1105/tpc.113.121731
|
[27] |
Ramsay N A, Glover B J. MYB-bHLH-WD40 protein complex and the evolution of cellular diversity[J]. Trends in Plant Science, 2005, 10(2): 63−70. doi: 10.1016/j.tplants.2004.12.011
|
[28] |
Wagner G J, Wang E, Shepherd R W. New approaches for studying and exploiting an old protuberance, the plant trichome[J]. Annals of Botany, 2004, 93(1): 3−11. doi: 10.1093/aob/mch011
|
[29] |
钮世辉, 李伟, 李悦. 油松种子园无性系自由授粉子代测定与种子批稳定性分析[J]. 西北林学院学报, 2013, 113(2): 66−69. doi: 10.3969/j.issn.1001-7461.2013.02.12
Niu S H, Li W, Li Y. Open pollinated progeny test and stability analysis of seedlot from clonal seed orchard of Pinus tabuliformis[J]. Journal of Northwest Forestry University, 2013, 113(2): 66−69. doi: 10.3969/j.issn.1001-7461.2013.02.12
|
[30] |
Ross S D, Pharis R P. Control of sex expression in conifers[J]. Plant Growth Regulation,, 1987, 6(1−2): 37−60. doi: 10.1007/BF00043949
|
[31] |
Edgar R C. MUSCLE: multiple sequence alignment with high accuracy and high throughput[J]. Nucleic Acids Research, 2004, 32(5): 1792−1797. doi: 10.1093/nar/gkh340
|
[32] |
Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution, 2018, 35(6): 1547−1549. doi: 10.1093/molbev/msy096
|
[33] |
He D H, Lei Z P, Tang B S, et al. Identification and analysis of the TIFY gene family in Gossypium raimondii[J]. Genetics and Molecular Research, 2015, 14(3): 10119−10138. doi: 10.4238/2015.August.21.19
|
[34] |
Chao J, Zhao Y, Jin J, et al. Genome-wide identification and characterization of the JAZ gene family in rubber tree (Hevea brasiliensis)[J]. Frontiers in Genetics, 2019, 10(372): 1−11.
|
[35] |
Wang Y, Pan F, Chen D, et al. Genome-wide identification and analysis of the Populus trichocarpa TIFY gene family[J]. Plant Physiology and Biochemistry, 2017, 115(4): 360−371.
|
[36] |
Ye H, Hao D, Tang N, et al. Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice[J]. Plant Molecular Biology, 2009, 71(3): 291−305. doi: 10.1007/s11103-009-9524-8
|
[37] |
Bowman J L, Kohchi T, Yamato K T, et al. Insights into land plant evolution garnered from the Marchantia polymorpha genome[J]. Cell, 2017, 171(2): 287−304. doi: 10.1016/j.cell.2017.09.030
|
[38] |
Monte I, Ishida S, Zamarreño A M, et al. Ligand-receptor co-evolution shaped the jasmonate pathway in land plants[J]. Nature Chemical Biology, 2018, 14(5): 480−488. doi: 10.1038/s41589-018-0033-4
|
[39] |
Howe G A, Koo A J, Major I T. Modularity in jasmonate signaling for multistress resilience[J]. Annual Review of Plant Biology, 2018, 69(1): 387−415. doi: 10.1146/annurev-arplant-042817-040047
|
[40] |
Chini A, Gimenez-Ibanez S, Goossens A, et al. Redundancy and specificity in jasmonate signalling[J]. Current Opinion in Plant Biology, 2016, 33(7): 147−156.
|
[41] |
Zhu T, Herrfurth C, Xin M, et al. Warm temperature triggers JOX and ST2A-mediated jasmonate catabolism to promote plant growth[J]. Nature Communications, 2021, 12(1): 1−8. doi: 10.1038/s41467-020-20314-w
|
[42] |
Chini A, Fonseca S, Fernandez G, et al. The JAZ family of repressors is the missing link in jasmonate signalling[J]. Nature, 2007, 448: 666−671. doi: 10.1038/nature06006
|
[43] |
Zhang M, Chen Y, Nie L, et al. Molecular, structural, and phylogenetic analyses of Taxus chinensis JAZs[J]. Gene, 2017, 620(4): 66−74.
|
[44] |
Shyu C, Figueroa P, Depew C L, et al. JAZ8 lacks a canonical degron and has an EAR motif that mediates transcriptional repression of Jasmonate responses in Arabidopsis[J]. The Plant Cell, 2012, 24(2): 536−550. doi: 10.1105/tpc.111.093005
|
[45] |
Zhang X C, Wang Z, Zhang X, et al. Evolutionary dynamics of protein domain architecture in plants[J]. BMC Evolutionary Biology, 2012, 12(1): 6−18. doi: 10.1186/1471-2148-12-6
|
[46] |
Manfield I W, Devlin P F, Jen C H, et al. Conservation, convergence, and divergence of light-responsive, circadian-regulated, and tissue-specific expression patterns during evolution of the Arabidopsis GATA gene family[J]. Plant Physiology, 2007, 143(2): 941−958. doi: 10.1104/pp.106.090761
|
[47] |
Goossens J, Fernández-Calvo P, Schweizer F, et al. Jasmonates: signal transduction components and their roles in environmental stress responses[J]. Plant Molecular Biology, 2016, 91(6): 673−689. doi: 10.1007/s11103-016-0480-9
|
[48] |
Song S, Qi T, Wasternack C, et al. Jasmonate signaling and crosstalk with gibberellin and ethylene[J]. Current Opinion in Plant Biology, 2014, 21(7): 112−119.
|
[1] | Wang Zijian, Ye Meixia, Zhang Han, Wu Rongling. Mixed-effect model development for functional mapping[J]. Journal of Beijing Forestry University, 2024, 46(5): 163-172. DOI: 10.12171/j.1000-1522.20220416 |
[2] | Yuan Ying, Wang Xuefeng, Shi Mengmeng, Wang Peng, Chen Xingjing. Prediction of relative chlorophyll content in Hopea hainanensis based on multispectral frequency domain features[J]. Journal of Beijing Forestry University, 2023, 45(11): 42-52. DOI: 10.12171/j.1000-1522.20230113 |
[3] | Feng Jialin, Liu Congcong, Qi Xiangyu, Di Zexin, Lu Yizeng, Zheng Jian. Cloning and functional analysis of heat shock protein SpHSP70-3 gene from Sorbus pohuashanensis[J]. Journal of Beijing Forestry University, 2022, 44(9): 52-61. DOI: 10.12171/j.1000-1522.20210235 |
[4] | Yin Peng, Liu Xiao, Lan Baoliang, Cui Yu, Xu Jichen. Sequence and functional analysis of mobile mRNAs in the heterologous grafted plants[J]. Journal of Beijing Forestry University, 2022, 44(5): 8-18. DOI: 10.12171/j.1000-1522.20210085 |
[5] | Li Sizheng, Yao Quan, Li He. Functional analysis of BRLZ motif of the transcription factor CfHac1 in Colletotrichum fructicola[J]. Journal of Beijing Forestry University, 2021, 43(9): 70-76. DOI: 10.12171/j.1000-1522.20210087 |
[6] | Yu Wen-jing, Song Xiao-shuang, Deng Xun, Ping Xiao-fan, Zhou Qi, Liu Zhi-hua. Cloning, prokaryotic expression and function of the eliciting plant response protein of Trichoderma asperellum[J]. Journal of Beijing Forestry University, 2018, 40(1): 17-26. DOI: 10.13332/j.1000-1522.20170249 |
[7] | ZHAO Na, ZHANG Yuan, LI Qiu-qi, LI Ru-fang, GUO Hui-hong. Sequence and functional analysis of FAD2 gene from Xanthoceras sorbifolia seeds[J]. Journal of Beijing Forestry University, 2015, 37(2): 87-93. DOI: 10.13332/j.cnki.jbfu.2015.02.017 |
[8] | ZHAO Suo-fei, SA Chao, YANG Na, LI Ting-ting. Laminated veneer lumber strength testing system based on time domain and frequency domain analyses.[J]. Journal of Beijing Forestry University, 2012, 34(3): 116-119. |
[9] | SHANG Shu-jiao, ZHOU Yan, LOU Xing-liang, GAO Shu-min, FAN Chun-xia. Research on UBL5 gene and its product structure and function[J]. Journal of Beijing Forestry University, 2010, 32(5): 172-176. |
[10] | FANG Lu-ming, CHAI Hong-ling, TANG Li-hua, XU Ai-jun. An extraction algorithm of a DEM based video visualization domain.[J]. Journal of Beijing Forestry University, 2010, 32(3): 27-32. |
1. |
王珊珊,王瑞,樊二勤,付鹏跃,曲冠证,王楠. 楸树DELLA基因家族生信分析及CbuGRAS9的功能分析. 植物研究. 2024(01): 139-151 .
![]() | |
2. |
叶佩琪,林晓慧,龙永彬,刘天颐,王哲. 湿加松TIFY基因家族的鉴定、分类与分析. 林业与环境科学. 2024(02): 1-10 .
![]() | |
3. |
燕佳惠,周成城,钮世辉,李伟. 油松SAUR基因家族鉴定及其干旱胁迫表达模式分析. 北京林业大学学报. 2024(08): 57-67 .
![]() | |
4. |
刘德帅,冯美,孙雨桐,王烨,迟敬楠,姚文孔. 葡萄VvGAI1与VvJAZ9蛋白互作及低温下的表达模式分析. 中国农业科学. 2023(15): 2977-2994 .
![]() | |
5. |
刘红梅,郑永涛,郭盈添,张晶星,李伟. 油松PtNF-YC1基因鉴定及其调控球花发育的作用机制研究. 北京林业大学学报. 2023(09): 1-8 .
![]() |