• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhang Jingxing, Ma Yanguang, Wang Huili, Liu Hongmei, Li Wei. Characteristics of JAZ gene family of Pinus tabuliformis and identification of functional domain of its interaction with DELLA protein[J]. Journal of Beijing Forestry University, 2022, 44(12): 12-22. DOI: 10.12171/j.1000-1522.20220027
Citation: Zhang Jingxing, Ma Yanguang, Wang Huili, Liu Hongmei, Li Wei. Characteristics of JAZ gene family of Pinus tabuliformis and identification of functional domain of its interaction with DELLA protein[J]. Journal of Beijing Forestry University, 2022, 44(12): 12-22. DOI: 10.12171/j.1000-1522.20220027

Characteristics of JAZ gene family of Pinus tabuliformis and identification of functional domain of its interaction with DELLA protein

More Information
  • Received Date: January 16, 2022
  • Revised Date: February 15, 2022
  • Available Online: April 05, 2022
  • Published Date: December 24, 2023
  •   Objective  We analyzed the characteristics of JAZ gene family in Pinus tabuliformis and its functional domain of interaction with gibberellin negative regulator DELLA protein, in order to lay a foundation for the analysis of jasmonic acid (JA) -gibberellin (GA) mediated growth/defense balance strategy in conifers with JAZ-DELLA as the core module.
      Method  This study screened and identified all JAZ genes based on the whole genome data of Pinus tabuliformis, and analyzed the basic characteristics of P. tabuliformis JAZ gene family; at the same time, a phylogenetic tree of multi-species JAZ gene family was constructed to explore the characteristics of P. tabuliformis JAZ gene family in the phylogenetic process. Furthermore, the functional domain of interaction between P. tabuliformis JAZ gene family and DELLA protein was identified by yeast two-hybrid technique.
      Result  There were 53 JAZ genes in P. tabuliformis, and the JAZ gene family of P. tabuliformis not only had TIFY and Jas conserved structures, but also evolved more abundant changes in the degron sequence. The promoter regions of multiple members of the JAZ gene family in P. tabuliformis contained cis-acting elements responding to JA and GA, and had a close evolutionary distance from several JAZ proteins in model plants. Further experiments showed that the Jas domains of 5 JAZ proteins (TIFY4, TIFY11, TIFY16, TIFY25, and TIFY59) in P. tabuliformis were interacted with PtDPL (DELLA-like), and it was clarified that the Jas domain in P. tabuliformis was the functional domain of interaction between JAZ protein and DELLA protein.
      Conclusion  This study clarified the basic sequence characteristics of JAZ gene family and identified the functional motif of protein JAZ and DELLA interaction in P. tabuliformis. At the same time, it also supplemented an important basis for the further study of JAZ gene family and JA-GA signaling pathway in conifers.
  • [1]
    Mandaokar A, Thines B, Shin B, et al. Transcriptional regulators of stamen development in Arabidopsis identified by transcriptional profiling[J]. The Plant Journal, 2010, 46(6): 984−1008.
    [2]
    Browse J. Jasmonate passes muster: a receptor and targets for the defense hormone[J]. Annual Review of Plant Biology, 2009, 60(1): 183−205. doi: 10.1146/annurev.arplant.043008.092007
    [3]
    Zhang H T, Memelink J. Regulation of secondary metabolism by jasmonate hormones[J]. Plant-Derived Natural Products, 2009: 181−194. doi: 10.1007/978-0-387-85498-4_8
    [4]
    Pauwels L, Morreel K, Witte E D, et al. Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured Arabidopsis cells[J]. PNAS, 2008, 105(4): 1380−1385. doi: 10.1073/pnas.0711203105
    [5]
    Wasternack C. Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development[J]. Annals of Botany, 2007, 100(4): 681−697. doi: 10.1093/aob/mcm079
    [6]
    Claus W, Miroslav S. Jasmonates: news on occurrence, biosynthesis, metabolism and action of an ancient group of signaling compounds[J]. International Journal of Molecular Sciences, 2018, 19(9): 2539−2564. doi: 10.3390/ijms19092539
    [7]
    Sheard L B, Tan X, Mao H, et al. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor[J]. Nature, 2010, 468: 400−405. doi: 10.1038/nature09430
    [8]
    Garrido-Bigotes A, Figueroa N E, Figueroa P M, et al. Jasmonate signaling pathway in strawberry: genome-wide identification, molecular characterization and expression of JAZs and MYCs during fruit development and ripening[J]. PLoS One, 2018, 13(5): e0197118. doi: 10.1371/journal.pone.0197118
    [9]
    Neale D B, Wegrzyn J L, Stevens K A, et al. Decoding the massive genome of loblolly pine using haploid DNA and novel assembly strategies[J]. Genome Biology, 2014, 15(3): R59. doi: 10.1186/gb-2014-15-3-r59
    [10]
    Bai Y, Meng Y, Huang D, et al. Origin and evolutionary analysis of the plant-specific TIFY transcription factor family[J]. Genomics, 2011, 98(2): 128−136. doi: 10.1016/j.ygeno.2011.05.002
    [11]
    Thireault C, Shyu C, Yoshida Y, et al. Repression of jasmonate signaling by a non-TIFY JAZ protein in Arabidopsis[J]. The Plant Journal, 2015, 82(4): 669−679. doi: 10.1111/tpj.12841
    [12]
    Chini A, Fonseca S, Chico J M, et al. The ZIM domain mediates homo- and heteromeric interactions between Arabidopsis JAZ proteins[J]. The Plant Journal, 2009, 59(1): 77−87. doi: 10.1111/j.1365-313X.2009.03852.x
    [13]
    Robson F, Costa M M, Hepworth S R, et al. Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants[J]. The Plant Journal, 2002, 28(6): 619−631. doi: 10.1046/j.1365-313x.2001.01163.x
    [14]
    Staswick P E. JAZing up jasmonate signaling[J]. Trends in Plant Science, 2008, 13(2): 66−71. doi: 10.1016/j.tplants.2007.11.011
    [15]
    Garrido-Bigotes A, Valenzuela-Riffo F, Figueroa C R. Evolutionary analysis of JAZ proteins in plants: an approach in search of the ancestral sequence[J]. International Journal of Molecular Sciences, 2019, 20(20): 5060−5080. doi: 10.3390/ijms20205060
    [16]
    Moreno J E, Shyu C, Campos M L, et al. Negative feedback control of jasmonate signaling by an alternative splice variant of JAZ10[J]. Plant Physiology, 2013, 162(2): 1006−1017. doi: 10.1104/pp.113.218164
    [17]
    Boter M, Golz J F, Giménez-Ibañez S, et al. FILAMENTOUS FLOWER is a direct target of JAZ3 and modulates responses to jasmonate[J]. The Plant Cell, 2015, 27(11): 3160−3174. doi: 10.1105/tpc.15.00220
    [18]
    Huang Z, Jin S H, Guo H D, et al. Genome-wide identification and characterization of TIFY family genes in Moso bamboo (Phyllostachys edulis) and expression profiling analysis under dehydration and cold stresses[J/OL]. Peer Journal, 2016, [2016−10−27]. DOI: 10.7717/peerj.2620.
    [19]
    Huot B, Yao J, Montgomery B L, et al. Growth–defense trade offs in plants: a balancing act to optimize fitness[J]. Molecular Plant, 2014, 7(8): 1267−1287. doi: 10.1093/mp/ssu049
    [20]
    Major I T, Yoshida Y, Campos M L, et al. Regulation of growth-defense balance by the JASMONATE ZIM-DOMAIN (JAZ)-MYC transcriptional module[J]. New Phytologist, 2017, 215(4): 1533−1547. doi: 10.1111/nph.14638
    [21]
    Cheng H, Song S, Xiao L, et al. Gibberellin acts through jasmonate to control the expression of MYB21, MYB24, and MYB57 to promote stamen filament growth in Arabidopsis[J]. PLoS Genetics, 2009, 5(3): e1000440. doi: 10.1371/journal.pgen.1000440
    [22]
    Hong G J, Xue X Y, Mao Y B, et al. Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression[J]. The Plant Cell, 2012, 24(6): 2635−2648. doi: 10.1105/tpc.112.098749
    [23]
    Song S, Qi T, Huang H, et al. The jasmonate-ZIM domain proteins interact with the R2R3-MYB transcription factors MYB21 and MYB24 to affect jasmonate-regulated stamen development in Arabidopsis[J]. The Plant Cell, 2011, 23(3): 1000−1013. doi: 10.1105/tpc.111.083089
    [24]
    Hou X, Lee Y, Xia K, et al. DELLAs modulate jasmonate signaling via competitive binding to JAZs[J]. Developmental Cell, 2010, 19(6): 884−894. doi: 10.1016/j.devcel.2010.10.024
    [25]
    Yang D L, Yao J, Mei C S, et al. Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade[J]. Proceedings of the National Academy of Sciences, 2012, 109(19): E1192−E1200.
    [26]
    Qi T, Huang H, Wu D, et al. Arabidopsis DELLA and JAZ proteins bind the WD-repeat/bHLH/MYB complex to modulate gibberellin and jasmonate signaling synergy[J]. The Plant Cell, 2014, 26(3): 1118−1133. doi: 10.1105/tpc.113.121731
    [27]
    Ramsay N A, Glover B J. MYB-bHLH-WD40 protein complex and the evolution of cellular diversity[J]. Trends in Plant Science, 2005, 10(2): 63−70. doi: 10.1016/j.tplants.2004.12.011
    [28]
    Wagner G J, Wang E, Shepherd R W. New approaches for studying and exploiting an old protuberance, the plant trichome[J]. Annals of Botany, 2004, 93(1): 3−11. doi: 10.1093/aob/mch011
    [29]
    钮世辉, 李伟, 李悦. 油松种子园无性系自由授粉子代测定与种子批稳定性分析[J]. 西北林学院学报, 2013, 113(2): 66−69. doi: 10.3969/j.issn.1001-7461.2013.02.12

    Niu S H, Li W, Li Y. Open pollinated progeny test and stability analysis of seedlot from clonal seed orchard of Pinus tabuliformis[J]. Journal of Northwest Forestry University, 2013, 113(2): 66−69. doi: 10.3969/j.issn.1001-7461.2013.02.12
    [30]
    Ross S D, Pharis R P. Control of sex expression in conifers[J]. Plant Growth Regulation,, 1987, 6(1−2): 37−60. doi: 10.1007/BF00043949
    [31]
    Edgar R C. MUSCLE: multiple sequence alignment with high accuracy and high throughput[J]. Nucleic Acids Research, 2004, 32(5): 1792−1797. doi: 10.1093/nar/gkh340
    [32]
    Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution, 2018, 35(6): 1547−1549. doi: 10.1093/molbev/msy096
    [33]
    He D H, Lei Z P, Tang B S, et al. Identification and analysis of the TIFY gene family in Gossypium raimondii[J]. Genetics and Molecular Research, 2015, 14(3): 10119−10138. doi: 10.4238/2015.August.21.19
    [34]
    Chao J, Zhao Y, Jin J, et al. Genome-wide identification and characterization of the JAZ gene family in rubber tree (Hevea brasiliensis)[J]. Frontiers in Genetics, 2019, 10(372): 1−11.
    [35]
    Wang Y, Pan F, Chen D, et al. Genome-wide identification and analysis of the Populus trichocarpa TIFY gene family[J]. Plant Physiology and Biochemistry, 2017, 115(4): 360−371.
    [36]
    Ye H, Hao D, Tang N, et al. Identification and expression profiling analysis of TIFY family genes involved in stress and phytohormone responses in rice[J]. Plant Molecular Biology, 2009, 71(3): 291−305. doi: 10.1007/s11103-009-9524-8
    [37]
    Bowman J L, Kohchi T, Yamato K T, et al. Insights into land plant evolution garnered from the Marchantia polymorpha genome[J]. Cell, 2017, 171(2): 287−304. doi: 10.1016/j.cell.2017.09.030
    [38]
    Monte I, Ishida S, Zamarreño A M, et al. Ligand-receptor co-evolution shaped the jasmonate pathway in land plants[J]. Nature Chemical Biology, 2018, 14(5): 480−488. doi: 10.1038/s41589-018-0033-4
    [39]
    Howe G A, Koo A J, Major I T. Modularity in jasmonate signaling for multistress resilience[J]. Annual Review of Plant Biology, 2018, 69(1): 387−415. doi: 10.1146/annurev-arplant-042817-040047
    [40]
    Chini A, Gimenez-Ibanez S, Goossens A, et al. Redundancy and specificity in jasmonate signalling[J]. Current Opinion in Plant Biology, 2016, 33(7): 147−156.
    [41]
    Zhu T, Herrfurth C, Xin M, et al. Warm temperature triggers JOX and ST2A-mediated jasmonate catabolism to promote plant growth[J]. Nature Communications, 2021, 12(1): 1−8. doi: 10.1038/s41467-020-20314-w
    [42]
    Chini A, Fonseca S, Fernandez G, et al. The JAZ family of repressors is the missing link in jasmonate signalling[J]. Nature, 2007, 448: 666−671. doi: 10.1038/nature06006
    [43]
    Zhang M, Chen Y, Nie L, et al. Molecular, structural, and phylogenetic analyses of Taxus chinensis JAZs[J]. Gene, 2017, 620(4): 66−74.
    [44]
    Shyu C, Figueroa P, Depew C L, et al. JAZ8 lacks a canonical degron and has an EAR motif that mediates transcriptional repression of Jasmonate responses in Arabidopsis[J]. The Plant Cell, 2012, 24(2): 536−550. doi: 10.1105/tpc.111.093005
    [45]
    Zhang X C, Wang Z, Zhang X, et al. Evolutionary dynamics of protein domain architecture in plants[J]. BMC Evolutionary Biology, 2012, 12(1): 6−18. doi: 10.1186/1471-2148-12-6
    [46]
    Manfield I W, Devlin P F, Jen C H, et al. Conservation, convergence, and divergence of light-responsive, circadian-regulated, and tissue-specific expression patterns during evolution of the Arabidopsis GATA gene family[J]. Plant Physiology, 2007, 143(2): 941−958. doi: 10.1104/pp.106.090761
    [47]
    Goossens J, Fernández-Calvo P, Schweizer F, et al. Jasmonates: signal transduction components and their roles in environmental stress responses[J]. Plant Molecular Biology, 2016, 91(6): 673−689. doi: 10.1007/s11103-016-0480-9
    [48]
    Song S, Qi T, Wasternack C, et al. Jasmonate signaling and crosstalk with gibberellin and ethylene[J]. Current Opinion in Plant Biology, 2014, 21(7): 112−119.
  • Related Articles

    [1]Wang Zijian, Ye Meixia, Zhang Han, Wu Rongling. Mixed-effect model development for functional mapping[J]. Journal of Beijing Forestry University, 2024, 46(5): 163-172. DOI: 10.12171/j.1000-1522.20220416
    [2]Yuan Ying, Wang Xuefeng, Shi Mengmeng, Wang Peng, Chen Xingjing. Prediction of relative chlorophyll content in Hopea hainanensis based on multispectral frequency domain features[J]. Journal of Beijing Forestry University, 2023, 45(11): 42-52. DOI: 10.12171/j.1000-1522.20230113
    [3]Feng Jialin, Liu Congcong, Qi Xiangyu, Di Zexin, Lu Yizeng, Zheng Jian. Cloning and functional analysis of heat shock protein SpHSP70-3 gene from Sorbus pohuashanensis[J]. Journal of Beijing Forestry University, 2022, 44(9): 52-61. DOI: 10.12171/j.1000-1522.20210235
    [4]Yin Peng, Liu Xiao, Lan Baoliang, Cui Yu, Xu Jichen. Sequence and functional analysis of mobile mRNAs in the heterologous grafted plants[J]. Journal of Beijing Forestry University, 2022, 44(5): 8-18. DOI: 10.12171/j.1000-1522.20210085
    [5]Li Sizheng, Yao Quan, Li He. Functional analysis of BRLZ motif of the transcription factor CfHac1 in Colletotrichum fructicola[J]. Journal of Beijing Forestry University, 2021, 43(9): 70-76. DOI: 10.12171/j.1000-1522.20210087
    [6]Yu Wen-jing, Song Xiao-shuang, Deng Xun, Ping Xiao-fan, Zhou Qi, Liu Zhi-hua. Cloning, prokaryotic expression and function of the eliciting plant response protein of Trichoderma asperellum[J]. Journal of Beijing Forestry University, 2018, 40(1): 17-26. DOI: 10.13332/j.1000-1522.20170249
    [7]ZHAO Na, ZHANG Yuan, LI Qiu-qi, LI Ru-fang, GUO Hui-hong. Sequence and functional analysis of FAD2 gene from Xanthoceras sorbifolia seeds[J]. Journal of Beijing Forestry University, 2015, 37(2): 87-93. DOI: 10.13332/j.cnki.jbfu.2015.02.017
    [8]ZHAO Suo-fei, SA Chao, YANG Na, LI Ting-ting. Laminated veneer lumber strength testing system based on time domain and frequency domain analyses.[J]. Journal of Beijing Forestry University, 2012, 34(3): 116-119.
    [9]SHANG Shu-jiao, ZHOU Yan, LOU Xing-liang, GAO Shu-min, FAN Chun-xia. Research on UBL5 gene and its product structure and function[J]. Journal of Beijing Forestry University, 2010, 32(5): 172-176.
    [10]FANG Lu-ming, CHAI Hong-ling, TANG Li-hua, XU Ai-jun. An extraction algorithm of a DEM based video visualization domain.[J]. Journal of Beijing Forestry University, 2010, 32(3): 27-32.
  • Cited by

    Periodical cited type(5)

    1. 王珊珊,王瑞,樊二勤,付鹏跃,曲冠证,王楠. 楸树DELLA基因家族生信分析及CbuGRAS9的功能分析. 植物研究. 2024(01): 139-151 .
    2. 叶佩琪,林晓慧,龙永彬,刘天颐,王哲. 湿加松TIFY基因家族的鉴定、分类与分析. 林业与环境科学. 2024(02): 1-10 .
    3. 燕佳惠,周成城,钮世辉,李伟. 油松SAUR基因家族鉴定及其干旱胁迫表达模式分析. 北京林业大学学报. 2024(08): 57-67 . 本站查看
    4. 刘德帅,冯美,孙雨桐,王烨,迟敬楠,姚文孔. 葡萄VvGAI1与VvJAZ9蛋白互作及低温下的表达模式分析. 中国农业科学. 2023(15): 2977-2994 .
    5. 刘红梅,郑永涛,郭盈添,张晶星,李伟. 油松PtNF-YC1基因鉴定及其调控球花发育的作用机制研究. 北京林业大学学报. 2023(09): 1-8 . 本站查看

    Other cited types(1)

Catalog

    Article views (1105) PDF downloads (199) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return