• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Wang Linlin, Cui Xiaoyang. Niche of underground resources of Pinus koraiensis and common broadleaved tree species in broadleaved secondary forest of Xiaoxing’anling Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2022, 44(12): 52-60. DOI: 10.12171/j.1000-1522.20220082
Citation: Wang Linlin, Cui Xiaoyang. Niche of underground resources of Pinus koraiensis and common broadleaved tree species in broadleaved secondary forest of Xiaoxing’anling Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2022, 44(12): 52-60. DOI: 10.12171/j.1000-1522.20220082

Niche of underground resources of Pinus koraiensis and common broadleaved tree species in broadleaved secondary forest of Xiaoxing’anling Mountains of northeastern China

More Information
  • Received Date: February 28, 2022
  • Revised Date: June 28, 2022
  • Available Online: November 03, 2022
  • Published Date: December 24, 2023
  •   Objective  The niche separation and overlap of underground resources between Pinus koraiensis and common broadleaved tree species in broadleaved secondary forests in Xiaoxing’anling Mountains of northeastern China were explored, in order to provide some reference for the rational selection of tree species in secondary forests and the scientific management of secondary forests in northeastern China.
      Method  The spatial niche of underground nutrition, seasonal niche and quantitative niche of soil moisture absorption, seasonal niche and quantitative niche of soil nutrient absorption and morphological niche of nutrients absorption of Pinus koraiensis and broadleaved tree species such as Betula platyphylla, Populus davidiana, Quercus mongolica, Fraxinus mandshurica and Tilia amurensis in secondary forest were studied.
      Result  There were separations between Pinus koraiensis and broadleaved tree species in the niche of underground nutrition space, seasonal niche for absorbing soil water, seasonal niche and quantitative niche for absorbing soil nutrients, and niche for absorbing soil nutrient forms. The concrete manifestations were as follows: (1) The absorption roots of broadleaved tree species were mainly distributed in the soil surface layer (0−20 cm), which was characterized by “shallow roots”. On the contrary, the distribution ratio of absorbing roots of Pinus koraiensis was lower in the topsoil and higher in the lower soil space (30−60 cm), which was relatively “deep-rooted”. (2) The broadleaved tree species generally began to absorb soil moisture from the middle of May to the end of September in a year; however, Pinus koraiensis still had transpiration from early April to October in a year. (3) The broadleaved tree species absorbed nitrogen from May to September in a year, with a short absorption period, and the peak of nutrient absorption in summer was steep and obvious; however, Pinus koraiensis, which was shaded by broadleaved tree species, had been slowly absorbing nitrogen nutrients in the whole growing season from April to October in a year, and the peak of nutrient absorption in summer was slow and the peak period was not obvious. (4) The broadleaved tree species had a large consumption of N nutrient and a low utilization efficiency, which belonged to high consumption and low efficiency; however, the N nutrient consumption of Pinus koraiensis was relatively small, and its utilization efficiency was 10.7%−36.8% higher than that of broadleaved tree species, which belonged to low consumption and high efficiency. (5) The nitrate reductase activity of Pinus koraiensis leaves was low in the selectivity of N nutrient chemical forms. The nitrate reductase activity in the leaves of broadleaved tree species was the highest, among which Betula platyphylla, Populus davidiana and Quercus mongolica were about 6.0−6.5 times as high as that of Pinus koraiensis and Fraxinus mandshurica and Tilia amurensis were about 2.6 and 2.7 times as high as that of Pinus koraiensis. (6) The niches overlap between Pinus koraiensis and Betula platyphylla, Populus davidiana, Quercus mongolica, Fraxinus mandshurica were small, which were 0.502, 0.426, 0.628 and 0.374 respectively, while the niche overlap between Tilia amurensis and Pinus koraiensis was as high as 0.903.
      Conclusion  According to the niche of underground resources, Pinus koraiensis and Betula platyphylla, Populus davidiana, Quercus mongolica, Fraxinus mandshurica and Tilia amurensis are all optimized mixed combinations, and the separation of niche of underground resources between Pinus koraiensis and broadleaved tree species are of great significance to their long-term coexistence and the sustained, stable and high yield of mixed communities.
  • [1]
    刘世荣, 王晖, 栾军伟. 中国森林土壤碳储量与土壤碳过程研究进展[J]. 生态学报, 2011, 31(19): 5437−5448.

    Liu S R, Wang H, Luan J W. A review of research progress and future prospective of forest soil carbon stock and soil carbon process in China[J]. Acta Ecologica Sinica, 2011, 31(19): 5437−5448.
    [2]
    邹莉, 张国权, 萨喜雅尔图, 等. 凉水原始阔叶红松林与白桦次生林植物多样性的比较研究[J]. 植物研究, 2015, 35(6): 945−951. doi: 10.7525/j.issn.1673-5102.2015.06.024

    Zou L, Zhang G Q, Saxiyaertu, et al. Plant diversity of virgin Broadleaved-Korean pine forest and brich secondary forest in Liangshui[J]. Bulletin of Botanical Research, 2015, 35(6): 945−951. doi: 10.7525/j.issn.1673-5102.2015.06.024
    [3]
    朱教君. 次生林经营基础研究进展[J]. 应用生态学报, 2002, 13(12): 1689−1694. doi: 10.3321/j.issn:1001-9332.2002.12.040

    Zhu J J. A review on fundamental studies of secondary forest management[J]. Chinese Journal of Applied Ecology, 2002, 13(12): 1689−1694. doi: 10.3321/j.issn:1001-9332.2002.12.040
    [4]
    Zhang P C, Shao G F, Zhao G, et al. China’s forest policy for the 21st century[J]. Science, 2000, 288: 2135−2136. doi: 10.1126/science.288.5474.2135
    [5]
    Zhu J J, Mao Z H, Hu L L, et al. Plant diversity of secondary forests in response to anthropogenic disturbance levels in montane regions of northeastern China[J]. Journal of Forest Research, 2007, 12(6): 403−416. doi: 10.1007/s10310-007-0033-9
    [6]
    Zhang M, Zhu J J, Li M C, et al. Different light acclimation strategies of two coexisting tree species seedlings in a temperate secondary forest along natural light levels[J]. Forest Ecology and Management, 2013, 306: 234−242. doi: 10.1016/j.foreco.2013.06.031
    [7]
    Ye Y, Fang X Q. Land use change in northeast China in the twentieth century: a note on sources, methods and patterns[J]. Journal of Historical Geography, 2009, 35: 311−329. doi: 10.1016/j.jhg.2008.08.007
    [8]
    陈大柯, 周晓峰, 丁宝永, 等. 黑龙江省天然次生林研究−栽针保阔的经营途径[J]. 东北林学院学报, 1984, 12(4): 1−12.

    Chen D K, Zhou X F, Ding B Y, et al. Research on natural secondary forest in Heilongjiang Province: the management approach of planting conifers and conservating deciduous trees[J]. Journal of Northeast Forestry University, 1984, 12(4): 1−12.
    [9]
    张群, 范少辉, 沈海龙. 红松混交林中红松幼树生长环境的研究进展及展望[J]. 林业科学研究, 2003, 16(2): 216−224. doi: 10.3321/j.issn:1001-1498.2003.02.016

    Zhang Q, Fan S H, Shen H L. Research and development on the growth environment of the young tree of Pinus koraiensis in Pinus koraiensis-broadleaved mixed forest[J]. Forest Research, 2003, 16(2): 216−224. doi: 10.3321/j.issn:1001-1498.2003.02.016
    [10]
    Grinnell J. The niche-relationship of the California thrasher[J]. Auk, 1917, 34: 427−433.
    [11]
    李 峰, 谢永宏, 陈心胜, 等. 黄河三角洲湿地水生植物组成及生态位[J]. 生态学报, 2009, 29(11): 6257−6265. doi: 10.3321/j.issn:1000-0933.2009.11.061

    Li F, Xie Y H, Chen X S, et, al. Composition of aquatic plant and their niche characteristics in wetlands of the Yellow River Delta[J]. Acta Ecologica Sinica, 2009, 29(11): 6257−6265. doi: 10.3321/j.issn:1000-0933.2009.11.061
    [12]
    刘加珍, 陈亚宁, 张元明. 塔里木河中游植物种群在四种环境梯度上的生态位特征[J]. 应用生态学报, 2004, 15(4): 549−555. doi: 10.3321/j.issn:1001-9332.2004.04.002

    Liu J Z, Chen Y N, Zhang Y M. Niche characteristics of plant on four environment gradients in middle reaches of Tarim River[J]. Chinese Journal of Applied Ecology, 2004, 15(4): 549−555. doi: 10.3321/j.issn:1001-9332.2004.04.002
    [13]
    赵成章, 张静, 盛亚萍. 高寒山区一年生混播牧草生态位对密度的响应[J]. 生态学报, 2013, 33(17): 5266−5273. doi: 10.5846/stxb201205250776

    Zhao C Z, Zhang J, Sheng Y P. The niche of annual mixed-seeding meadow in response to density in alpine of the Qilian Mountain, China[J]. Acta Ecologica Sinica, 2013, 33(17): 5266−5273. doi: 10.5846/stxb201205250776
    [14]
    姜俊, 赵秀海. 吉林蛟河针阔混交林群落优势种群种间联结性[J]. 林业科学, 2011, 47(12): 149−153. doi: 10.11707/j.1001-7488.20111222

    Jiang J, Zhao X H. Interspecific correlations among dominant tree species in the coniferous and broadleaved mixed forest communities in Jiaohe, Jilin Province[J]. Scientia Silvae Sinicae, 2011, 47(12): 149−153. doi: 10.11707/j.1001-7488.20111222
    [15]
    林玥霏, 巫志龙, 周成军, 等. 采伐干扰下次生林灌木层主要树种的生态位动态[J]. 森林与环境学报, 2020, 40(1): 1−8.

    Lin Y F, Wu Z L, Zhou C J, et al. Effect of harvesting on niche dynamics of the main tree species in the shrub layer of a secondary forest[J]. Journal of Forest and Environment, 2020, 40(1): 1−8.
    [16]
    李婷婷, 容丽, 王梦洁, 等. 黔中喀斯特次生林主要物种的生态位及种间联结性动态变化[J]. 热带亚热带植物学报, 2021, 29(1): 9−19. doi: 10.11926/jtsb.4252

    Li T T, Rong L, Wang M J, et al. Dynamic changes in niche and interspecific association of major species of karst secondary forest in central Guizhou[J]. Journal of Tropical and Subtropical Botany, 2021, 29(1): 9−19. doi: 10.11926/jtsb.4252
    [17]
    郝建峰, 李艳, 齐锦秋, 等. 人为干扰对碧峰峡栲树次生林群落物种多样性及其优势种群生态位的影响[J]. 生态学报, 2016, 36(23): 7678−7688.

    Hao J F, Li Y, Qi J Q, et al. Effect of anthropogenic disturbances on the species diversity and niche of the dominant populations in a Castanopsis fargesii secondary community in Bifengxia, Sichuan[J]. Acta Ecologica Sinica, 2016, 36(23): 7678−7688.
    [18]
    任青山, 李茹秀, 洪军, 等. 空间生态位的分析方法在森林资源评价中的应用[J]. 东北林业大学学报, 1998, 26(4): 1−6.

    Ren Q S, Li R X, Hong J, et al. Application of spatial niche analysis method in forest resources evaluation[J]. Journal of Northeast Forestry University, 1998, 26(4): 1−6.
    [19]
    李德志, 李广祥, 孙淑艳. 东北东部山区天然次生林群落中主要树木种群生态位的测度与分析[J]. 吉林林学院学报, 1995, 11(2): 69−74.

    Li D Z, Li G X, Sun S Y. Measurement and analysis of niche of main tree populations in natural secondary forest community in northeast mountainous area[J]. Journal of Jilin Forestry University, 1995, 11(2): 69−74.
    [20]
    梁玉莲, 国庆喜. 基于地形汇流值的东北天然次生林主要树种的生态位[J]. 生态学报, 2010, 30(11): 2874−2882.

    Liang Y L, Guo Q X. Determining niches of the major tree species based on a flow accumulation technique in a natural secondary forest in Northeastern China[J]. Acta Ecologica Sinica, 2010, 30(11): 2874−2882.
    [21]
    崔晓阳. 东北森林氮素营养的生态学[M]. 哈尔滨: 东北林业大学出版社, 1998: 113−153.

    Cui X Y. The ecology of nitrogen nutrition in the northeast forest[M]. Harbin: Northeast Forestry University Press, 1998: 113−153.
    [22]
    崔晓阳. 森林树种的氮营养行为及其分异研究[D]. 哈尔滨: 东北林业大学, 1997: 1−66.

    Cui X Y. Nitrogen trophic behavior and its differentiation of forest tree species[D]. Harbin: Northeast Forestry University, 1997: 1−66.
    [23]
    苏梦云, 周国璋. 树木组织中硝酸还原酶测定方法[J]. 林业科技通讯, 1986, 8(7): 25−26.

    Su M Y, Zhou G Z. Methods of N R determination for tree species[J]. Forest Science and Technology, 1986, 8(7): 25−26.
    [24]
    林思祖, 黄世国, 洪伟, 等. 杉阔混交林主要种群多维生态位特征[J]. 生态学报, 2002, 22(6): 962−968. doi: 10.3321/j.issn:1000-0933.2002.06.025

    Lin S Z, Huang S G, Hong W, et al. The characteristics of multi-dimension niche of dominant populations in Chinese fir and broad-leaved mixed forest[J]. Acta Ecologica Sinica, 2002, 22(6): 962−968. doi: 10.3321/j.issn:1000-0933.2002.06.025
    [25]
    崔晓阳. 红松、白桦的氮营养行为及其种间分异[J]. 应用生态学报, 1998, 9(2): 123−127.

    Cui X Y. Behaviors of nitrogen nutrition of Pinus koraiensis and Betula platyphylla and their interspecific differentiation[J]. Chinese Journal of Applied Ecology, 1998, 9(2): 123−127.
    [26]
    崔晓阳. 落叶松、水曲柳的氮营养行为及其种间分异[J]. 应用生态学报, 2001, 12(6): 815−818. doi: 10.3321/j.issn:1001-9332.2001.06.004

    Cui X Y. Nitrogen nutrition patterns of larch and ash tree and their interspecific differentiation[J]. Chinese Journal of Applied Ecology, 2001, 12(6): 815−818. doi: 10.3321/j.issn:1001-9332.2001.06.004
    [27]
    郝静梅, 张韫, 崔晓阳, 等. 原始阔叶红松林、次生林土壤矿质氮特征及树种吸收反应[J]. 北京林业大学学报, 2014, 36(1): 21−25.

    Hao J M, Zhang Y, Cui X Y, et al. Soil mineral N characteristics in original broadleaved Pinus koraiensis forest and secondary forest N absorption of some tree species[J]. Journal of Beijing Forestry University, 2014, 36(1): 21−25.
    [28]
    牛慧慧, 陈辉, 付阳, 等. 柴达木盆地东部荒漠植物生态位特征[J]. 生态学报, 2019, 39(8): 2862−2871.

    Niu H H, Chen H, Fu Y, et al. Ecological niche characteristics of desert plants in the eastern Qaidam Basin[J]. Acta Ecologica Sinica, 2019, 39(8): 2862−2871.
    [29]
    段后浪, 赵安, 姚忠. 恒湖农场茶叶港草洲枯水期湿地植物与土壤关系及种群生态位分析[J]. 生态学报, 2017, 37(11): 3744−3754.

    Duan H L, Zhao A, Yao Z. Analysis of wetland plant-soil relationships and population niches in Chayegang Marshland near Henghu Farm in the Poyang Lake region during the dry season[J]. Acta Ecologica Sinica, 2017, 37(11): 3744−3754.
    [30]
    徐振邦, 戴洪才, 李昕. 主要伴生树种树叶对红松生长的影响[J]. 林业科学, 1992, 28(4): 357−361. doi: 10.3321/j.issn:1001-7488.1992.04.005

    Xu Z B, Dai H C, Li X. A study on the influence of mainly associated tree species on growth of Pinus koraiensis[J]. Scientia Silvae Sinicae, 1992, 28(4): 357−361. doi: 10.3321/j.issn:1001-7488.1992.04.005
    [31]
    欧芷阳, 庞世龙, 何琴飞, 等. 喀斯特山地植被恢复过程主要种生态位梯度变化[J]. 中南林业科技大学学报, 2014, 34(12): 96−101. doi: 10.3969/j.issn.1673-923X.2014.12.019

    Ou Z Y, Pang S L, He Q F, et, al. Gradient changes of dominant species’ niche in the process of vegetation restoration in karst mountain area of Pingguo County, Southwest Guangxi Province[J]. Journal of Central South University of Forestry & Technology, 2014, 34(12): 96−101. doi: 10.3969/j.issn.1673-923X.2014.12.019
    [32]
    郭伟, 耿珍珍, 陈朝, 等. 模拟氮沉降增加对长白山红松和水曲柳菌根真菌群落结构及多样性的影响[J]. 生态环境学报, 2018, 27(1): 10−17.

    Guo W, Geng Z Z, Chen C, et, al. Effect of nitrogen addition on mycorrhizal fungi community structure and diversity of Pinus koraiensis and Fraxinus mandshurica in Changbai Mountain[J]. Ecology and Environmental Sciences, 2018, 27(1): 10−17.
    [33]
    李敏, 吕桂芬, 牛艳芳, 等. 内蒙古不同气候带白桦外生菌根真菌群落结构及影响因素[J]. 生态学报, 2022, 42(12): 1−14.

    Li M, Lü G F, Niu Y F, et, al. Ectomycorrhizal community structure and driving factors of Betula platylla in different climate zones in Inner Mongolia[J]. Acta Ecologica Sinica, 2022, 42(12): 1−14.
    [34]
    王琴. 蒙古栎外生菌根真菌多样性研究[J]. 辽宁林业科技, 2013(3): 6−9, 14. doi: 10.3969/j.issn.1001-1714.2013.03.003

    Wang Q. Diversity of ectomycorrhizal fungi in Quercus mongolica[J]. Liaoning Forestry Science and Technology, 2013(3): 6−9, 14. doi: 10.3969/j.issn.1001-1714.2013.03.003
    [35]
    崔磊, 穆立蔷. 黑龙江省紫椴典型分布区外生菌根形态与解剖特征[J]. 生态学杂志, 2014, 33(9): 2490−2500.

    Cui L, Mu L Q. Morphological and anatomical characteristics of ectomycorrhiza in typical distribution areas of Tilia amurensis in Heilongjiang Province[J]. Chinese Journal of Ecology, 2014, 33(9): 2490−2500.
    [36]
    樊永军, 闫伟, 王黎元. 内蒙古地区山杨外生菌根形态解剖学特征研究[J]. 西北植物学报, 2010, 30(7): 1397−1403.

    Fan Y J, Yan W, Wang L Y. Morphological and anatomical characteristics of ectomycorrhiza of Populus davidiana in Inner Mongolia[J]. Acta Botanica Boreali-Occidentalia Sinica, 2010, 30(7): 1397−1403.
  • Related Articles

    [1]Zhang Shuning, Bao Wenquan, Ao Dun, Zhao Guanghua, Wang Lin, Wuyun Tana, Bai Yu’e, Han Qimuge. Potential distribution area and niche change of Prunus mira under context of climate change[J]. Journal of Beijing Forestry University, 2024, 46(9): 45-56. DOI: 10.12171/j.1000-1522.20230014
    [2]Chen Shiyou, Jiang Chunqian, Bai Yanfeng, Wang Hui, He Yunhe. Niche of dominant species in shrub layer of Pinus massoniana secondary forest at the initial stage of forest gap[J]. Journal of Beijing Forestry University, 2023, 45(7): 27-35. DOI: 10.12171/j.1000-1522.20220084
    [3]Jin Shan, Wu Shuaikai. Niche and interspecific association of dominant species in herb layer of burned Pinus tabuliformis forest in the southern Taihang Mountain of northern China[J]. Journal of Beijing Forestry University, 2021, 43(4): 35-46. DOI: 10.12171/j.1000-1522.20210044
    [4]WANG Xin, LIU Qin, HUANG Qin, ZHANG Hua-yu, LI Zong-feng, ZHANG Shi-qiang, DENG Hong-ping. Niche characteristics and CCA ordination of dominant species of Thuja sutchuenensis community[J]. Journal of Beijing Forestry University, 2017, 39(8): 60-67. DOI: 10.13332/j.1000-1522.20160172
    [5]ZHOU Ya-qi, GUAN Feng-ying, FAN Shao-hui, LIU Guang-lu, XIA Ming-peng, TU Nian-wang. Niche characteristics of Phyllostachys edulis and its associated tree species in Tianbaoyan bamboo and broadleaved mixed forest[J]. Journal of Beijing Forestry University, 2017, 39(7): 46-53. DOI: 10.13332/j.1000-1522.20170061
    [6]WANG Heng-heng, LI Bin, LUAN Xiao-feng.. Niche analysis of amphibians in typical plantations of Fujian Province, eastern China.[J]. Journal of Beijing Forestry University, 2014, 36(1): 66-71.
    [7]NI Rui-qiang, TANG Jing-yi, CHENG Yan-xia, ZHANG Chun-yu, CHEN Bei-bei, HE Huai- jiang, XIA Fu-cai. Spatial distribution patterns and associations of main tree species in spruce-fir forest in Changbai Mountains, northeastern China.[J]. Journal of Beijing Forestry University, 2013, 35(6): 28-35.
    [8]DU Zhi, KANG Xin-gang, BAO Yu-jun, YANG Xin-xia. Spatial distribution patterns and associations of tree species during different succession stages in sprucefir forests of Changbai Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2012, 34(2): 14-19.
    [9]ZHANG Ling, , YUAN Xiao-ying, ZHANG Dong-lai. Interspecific association of dominant tree species in Larix gmelini(Rupr.)Rupr. community of Maoer Mountain[J]. Journal of Beijing Forestry University, 2008, 30(4): 141-145.
    [10]SONG Ji-ying, LUO You-qing, SHI Juan, YAN Xiao-su, CHEN Wei-ping, JIANG Ping. Niche characteristics of boring insects within Pinus massoniana infected by Bursaphelenchus xylophilus[J]. Journal of Beijing Forestry University, 2005, 27(6): 108-111.
  • Cited by

    Periodical cited type(3)

    1. 王浩鑫,蔡体久,景继鑫,杨朝纲,杨涵祎. 小兴安岭地区3种人工林碳储量及其分配特征. 林业勘查设计. 2025(01): 24-30+35 .
    2. 沈德才,胡桢健,陈跃洲,罗永光. 东莞城市绿地植物群落优势种群的生态位和种间联结分析. 林业与环境科学. 2024(06): 46-58 .
    3. 杨军,毛景山. 不同直播造林技术对吉林地区红松生长发育及土壤状况的影响. 绿色科技. 2023(21): 108-111 .

    Other cited types(1)

Catalog

    Article views (663) PDF downloads (79) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return