• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Chen Meilin, Han Hairong. Response of four common tree species suitable areas to climate change in the Loess Plateau region of northern China[J]. Journal of Beijing Forestry University, 2023, 45(3): 21-33. DOI: 10.12171/j.1000-1522.20220138
Citation: Chen Meilin, Han Hairong. Response of four common tree species suitable areas to climate change in the Loess Plateau region of northern China[J]. Journal of Beijing Forestry University, 2023, 45(3): 21-33. DOI: 10.12171/j.1000-1522.20220138

Response of four common tree species suitable areas to climate change in the Loess Plateau region of northern China

More Information
  • Received Date: April 11, 2022
  • Revised Date: June 21, 2022
  • Available Online: February 28, 2023
  • Published Date: March 24, 2023
  •   Objective  This paper aims to analyze the current and future potential distributions of four common tree species (Pinus sylvestris, Pinus tabuliformis, Caragana korshinskii and Larix gmelinii var. principis-rupprechtii) in the Loess Plateau region of northern China, and to reveal the effects of climate change on spatial distribution patterns of plants.
      Method  Four dominant species on the Loess Plateau were studied based on 19 climate factors and 5 indicators from Holdridge life zone model and Kira index system: bio-temperature (ABT), potential evapotranspiration rate (PER), warmth index (WI), coldness index (CI) and humidity index (HI). The Maxent model was used to predict the potential geographical distribution of the four tree species under current and future scenarios (2041−2060, 2061−2080) SSP126, SSP245 and SSP585. The Jackknife method was used to analyze the main environmental factors affecting its distribution, and the predicted results were tested by the area under receiver operating characteristic curve (AUC).
      Result  (1) Maxent model can well simulate the potential geographical distribution range of major established species in the Loess Plateau, and the average AUC of each species was greater than 0.8. (2) For Pinus sylvestris, Pinus tabuliformis and Caragana korshinskii, both temperature and precipitation limited their distribution, while for Larix gmelinii var. principis-rupprechtii, precipitation was the main factor affecting their distribution. Temperature seasonality, potential evapotranspiration rate, precipitation of the driest month and precipitation of the wettest quarter were the main environmental factors affecting the distribution of Pinus sylvestris. Temperature annual range, temperature seasonality, minimum temperature of the coldest month, precipitation of the warmest quarter and potential evapotranspiration rate were the main factors affecting the distribution of Pinus tabuliformis. The main factors affecting the distribution of Caragana korshinskii are maximum temperature of the warmest month, warmth index, isotherm, potential evapotranspiration rate and precipitation of the coldest season. The main factors affecting the distribution of Larix gmelinii var. principis-rupprechtii were mainly related to precipitation, which were precipitation of the wettest month, precipitation of the wettest quarter, variation coefficient of precipitation, and potential evapotranspiration rate. (3) The potential suitable areas of Pinus tabuliformis, Caragana korshinskii and Larix gmelinii var. principis-rupprechtii will migrate to the northwest, while that of Pinus sylvestris will migrate to the southwest. The potential suitable areas of Pinus tabuliformis and Larix gmelinii var. principis-rupprechtii showed a trend of expanding first and then decreasing, while the potential suitable areas of Caragana korshinskii and Pinus sylvestris would continue to expand, especially the proportion of highly suitable areas of Pinus sylvestris would expand to 50.97% in 2070s.
      Conclusion  Climate change will deprive Pinus tabuliformis and Larix gmelinii var. principis-rupprechtii of some of their highly suitable areas, but at the same time, the highly suitable areas of Caragana korshinskii and Pinus sylvestris will expand significantly. Caragana korshinskii and Pinus sylvestris are preferred in the project of converting farmland to forest land on the Loess Plateau.
  • [1]
    Qin H, Dong G, Zhang Y, et al. Patterns of species and phylogenetic diversity of Pinus tabuliformis forests in the eastern Loess Plateau, China[J]. Forest Ecology and Management, 2017, 394: 42−51. doi: 10.1016/j.foreco.2017.03.030
    [2]
    Nadine B, Christoph S, Willy T. Impact of holocene climate changes on alpine and treeline vegetation at Sanetsch Pass, Bernese Alps, Switzerland[J]. Review of Palaeobotany and Palynology, 2012, 174: 91−100. doi: 10.1016/j.revpalbo.2011.12.007
    [3]
    Wang S, Meng F, Duan J, et al. Asymmetric sensitivity of first flowering date to warming and cooling in alpine plants[J]. Ecology, 2014, 95: 3387−3398. doi: 10.1890/13-2235.1
    [4]
    Dorji T, Totland O, Moe S R, et al. Plant functional traits mediate reproductive phenology and success in response to experimental warming and snow addition in Tibet[J]. Global Change Biology, 2013, 19: 459−472. doi: 10.1111/gcb.12059
    [5]
    Intergovernmental Panel on Climate Change. Fifth assessment report (AR5)[EB/OL]. (2013−06−07)[2018−07−08]. http://www.ipcc.ch/assessment-report/ar5/.
    [6]
    张雪娇, 高贤明, 吉成均, 等. 中国北方5种栎属树木多度分布及其对未来气候变化的响应[J]. 植物生态学报, 2019, 43(9): 774−782. doi: 10.17521/cjpe.2018.0249

    Zhang X J, Gao X M, Ji C J, et al. Response of abundance distribution of five species of Quercus to climate change in northern China[J]. Chinese Journal of Plant Ecology, 2019, 43(9): 774−782. doi: 10.17521/cjpe.2018.0249
    [7]
    段义忠, 王海涛, 王驰, 等. 气候变化下濒危植物半日花在中国的潜在分布[J]. 植物资源与环境学报, 2020, 29(2): 55−68. doi: 10.3969/j.issn.1674-7895.2020.02.07

    Duan Y Z, Wang H T, Wang C, et al. Potential distribution of endangered plant Helianthemum songaricum in China under climate change[J]. Journal of Plant Resources and Environment, 2020, 29(2): 55−68. doi: 10.3969/j.issn.1674-7895.2020.02.07
    [8]
    马松梅, 魏博, 李晓辰, 等. 气候变化对梭梭植物适宜分布的影响[J]. 生态学杂志, 2017, 36(5): 1243−1250.

    Ma S M, Wei B, Li X C, et al. The impacts of climate change on the potential distribution of Haloxylon ammodendron[J]. Chinese Journal of Ecology, 2017, 36(5): 1243−1250.
    [9]
    宋文静, 吴绍洪, 陶泽兴, 等. 近30年中国中东部地区植物分布变化[J]. 地理研究, 2016, 35(8): 1420−1432.

    Song W J, Wu S H, Tao Z X, et al. Distribution change of plants over mid-eastern China during last 30 years[J]. Geographical Research, 2016, 35(8): 1420−1432.
    [10]
    Sharmin S, Tanjinul H M, Shiro T, et al. Predicting the probable impact of climate change on the distribution of threatened Shorea robusta forest in Purbachal, Bangladesh[J/OL]. Global Ecology and Conservation, 2020, 24: e01250[2022−12−21]. https://doi.org/10.1016/j.gecco.2020.e01250.
    [11]
    David N B, Mathieu B, Allison M B, et al. Comparing species distribution models constructed with different subsets of environmental predictors[J]. Diversity and Distributions, 2015, 21(1/2): 23−35.
    [12]
    李国庆, 刘长成, 刘玉国, 等. 物种分布模型理论研究进展[J]. 生态学报, 2013, 33(16): 4827−4835. doi: 10.5846/stxb201212031735

    Li G Q, Liu C C, Liu Y G, et al. Advances in theoretical issues of species distribution models[J]. Acta Ecologica Sinica, 2013, 33(16): 4827−4835. doi: 10.5846/stxb201212031735
    [13]
    刘晓彤, 袁泉, 倪健. 中国植物分布模拟研究现状[J]. 植物生态学报, 2019, 43(4): 273−283.

    Liu X T, Yuan Q, Ni J. Research advances in modelling plant species distribution in China[J]. Chinese Journal of Plant Ecology, 2019, 43(4): 273−283.
    [14]
    王志威. 药用植物云南土沉香潜在适生区及关键气候因子的影响[J]. 生态学杂志, 2022, 41(10): 1991−1997.

    Wang Z W. The potential suitable areas and impact of key climatic factors of medicinal plant Excoecaria acerifolia Didr[J/OL]. Chinese Journal of Ecology, 2022, 41(10): 1991−1997.
    [15]
    Duan X G, Li J Q, Wu S H. MaxEnt modeling to estimate the impact of climate factors on distribution of Pinus densiflora[J/OL]. Forests, 2022, 13(3): 402[2022−12−21]. https://doi.org/10.3390/f13030402.
    [16]
    张晓玮, 蒋玉梅, 毕阳, 等. 基于MaxEnt模型的中国沙棘潜在适宜分布区分析[J]. 生态学报, 2022, 42(4): 1420−1428.

    Zhang X W, Jiang Y M, Bi Y, et al. ldentification of potential distribution area for Hippophae rhamnoides subsp. sinensis by the MaxEnt model[J]. Acta Ecologica Sinica, 2022, 42(4): 1420-1428
    [17]
    Phillips S J, Anderson R P, Schapire R E. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 2006, 190(3−4): 231−259. doi: 10.1016/j.ecolmodel.2005.03.026
    [18]
    柳晓燕, 李俊生, 赵彩云, 等. 基于 MAXENT 模型和 ArcGIS 预测豚草在中国的潜在适生区[J]. 植物保护学报, 2016, 43(6): 1041−1048.

    Liu X Y, Li J S, Zhao C Y, et al. Prediction of potential suitable area of Ambrosia artemisiifolia L. in China based on MAXENT and ArcGIS[J]. Chinese Journal of Plant Protection, 2016, 43(6): 1041−1048.
    [19]
    Roberto M, Ricardo Z, Juan R M, et al. Predictive modeling of microhabitats for endemic birds in South Chilean temperate forests using Maximum entropy (Maxent)[J]. Ecological Informatics, 2011, 6(6): 364−370. doi: 10.1016/j.ecoinf.2011.07.003
    [20]
    Solhjouy-Fard S, Sarafrazi A, et al. Patterns of niche overlapping and richness among Geocoris species (Hemiptera: Geocoridae) in Iran[J]. Biocontrol Science & Technology, 2016, 26(9): 1197−1211.
    [21]
    Phillips S J, Dudik M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation[J]. Ecography, 2008, 31(2): 161−175. doi: 10.1111/j.0906-7590.2008.5203.x
    [22]
    董光, 何兰, 程武学. 基于MaxEnt和GIS技术的桔梗适宜性分布区划研究[J]. 中药材, 2019, 42(1): 66−70.

    Dong G, He L, Cheng W X. Study on suitability distribution regionalization of Platycodon grandiflorum based on Maxent and GIS[J]. Traditional Chinese Medicine, 2019, 42 (1): 66−70.
    [23]
    张满清. 黄土高原退耕还林树种选择与配置[D]. 北京: 北京林业大学, 2004.

    Zhang M Q. Studies on tree species selection and arrangement in the Conversion of Farmland to Forest (CFF) Project on the Loess Plateau[D]. Beijing: Beijing Forestry University, 2004.
    [24]
    张玲. 甘肃中部退耕还林还草气候适应性分析−以定西市为例[J]. 甘肃科技, 2020, 36(18): 152−156. doi: 10.3969/j.issn.1000-0952.2020.18.054

    Zhang L. Climate adaptability analysis of returning farmland to forestry and grassland in central Gansu: taking Dingxi City as an example[J]. Gansu Science and Technology, 2020, 36(18): 152−156. doi: 10.3969/j.issn.1000-0952.2020.18.054
    [25]
    魏安琪. 陕西吴起退耕还林植被恢复及常见造林树种适生性研究[D]. 北京: 北京林业大学, 2019.

    Wei A Q. Study on vegetation restoration and adaptability of common afforestation tree species in converted farmland to forestry region: a case of Wuqi County, Shaanxi Province[D]. Beijing: Beijing Forestry University, 2019.
    [26]
    Jiang X L, Deng M, Li Y. Evolutionary history of subtropical evergreen broad-leaved forest in Yunnan Plateau and adjacent areas: an insight from Quercus schottkyana (Fagaceae)[J/OL]. Tree Genetics & Genomes, 2016, 12(6): 104[2022−12−21]. DOI: 10.1007/s11295-016-1063-2.
    [27]
    李洁. 未来气候变化对中国6种典型落叶阔叶树种脆弱性研究[D]. 杨凌: 西北农林科技大学, 2020.

    Li J. Vulnerability of six typical deciduous broadleaved tree species to future climate change in China[D]. Yangling: Northwest A&F University, 2020.
    [28]
    Dyderski M K, Paź S, Frelich L E, et al. How much does climate change threaten European forest tree species distributions?[J]. Global Change Biology, 2018, 24(3): 1150−1163. doi: 10.1111/gcb.13925
    [29]
    张晓芹. 西北旱区典型生态经济树种地理分布与气候适宜性研究[D]. 杨凌: 中国科学院大学(中国科学院教育部水土保持与生态环境研究中心), 2018.

    Zhang X Q. Geographical distribution and climatic suitability of typical eco-economical tree species in the dryland of Northwest China[D]. Yangling: University of Chinese Academy of Sciences (Research Center for Soil and Water Conservation and Eco-Environment, Ministry of Education, Chinese Academy of Sciences), 2018.
    [30]
    吕振刚, 李文博, 黄选瑞, 等. 气候变化情景下河北省3个优势树种适宜分布区预测[J]. 林业科学, 2019, 55(3): 13−21.

    Lü Z G, Li W B, Huang X R, et al. Predicting suitable distribution area of three dominant tree species under climate change scenarios in Hebei Province[J]. Scientia Silvae Sinicae, 2019, 55(3): 13−21.
    [31]
    张日升, 贾树海, 张国剑, 等. 基于GIS的樟子松种植适宜性评价研究[J]. 土壤通报, 2019, 50(3): 555−561.

    Zhang R S, Jia S H, Zhang G J, et al. Suitability evaluation for Pinus sylvestris var. mongolica planting based on GlS[J]. Chinese Journal of Soil Science, 2019, 50(3): 555−561.
    [32]
    张晨星, 张炜, 徐晶晶, 等. 基于GIS和最大熵模型的河北省油松适宜性分布分析[J]. 地理与地理信息科学, 2020, 36(6): 18−25.

    Zhang C X, Zhang W, Xu J J, et al. Analysis on suitability distribution of Pinus tabuliformis in Hebei Province based on GlS and MaxEnt model[J]. Geography and Geo-Information Science, 2020, 36(6): 18−25.
    [33]
    王子婷, 柴春山, 张洋东, 等. 半干旱黄土区柠条生长与环境因子的关系研究进展[J]. 中国水土保持, 2021(1): 49−52.

    Wang Z T, Chai C S, Zhang Y D, et al. Research progress on relationship between Caragana korshinskii growth and environmental factors in the semi-arid loess area[J]. Soil and Water Conservation in China, 2021(1): 49−52.
    [34]
    穆喜云, 乌志颜, 李显玉, 等. 基于最大熵模型的赤峰市华北落叶松人工林适宜分布区估测[J]. 干旱区资源与环境, 2021, 35(6): 144−152.

    Mu X Y, Wu Z Y, Li X Y, et al. Estimation of the potential distribution areas of Larix principis-rupprechtii plantation in Chifeng based on MaxEnt model[J]. Journal of Arid Land Resources and Environment, 2021, 35(6): 144−152.
    [35]
    Shao H, Zhang Y D, Gu F X, et al. Impacts of climate extremes on ecosystem metrics in southwest China[J/OL]. Science of the Total Environment, 2021, 776: 145979[2022−12−21]. https://doi.org/10.1016/j.scitotenv.2021.145979.
    [36]
    郑治斌, 邓艳君, 黄永平. 极端天气气候事件对江汉湖群湿地生态的影响研究[J]. 人民长江, 2021, 52(增刊2): 45−51.

    Zheng Z B, Deng Y J, Huang Y P. Study on impact of extreme weather and climate events on wetland ecology of Jianghan Lake Group[J]. Yangtze River, 201, 52(Suppl. 2): 45−51.
    [37]
    冯斌. 气候变化背景下广西自然保护区体系的管理有效性研究[D]. 北京: 中国林业科学研究院, 2020.

    Feng B. Study on the management effectiveness of nature reserve system of Guangxi in the context of climate change[D]. Beijing: Chinese Academy of Forestry, 2020.
    [38]
    李雅, 于秀波, 刘宇, 等. 湿地植物功能性状对水文过程的响应研究进展[J]. 生态学杂志, 2018, 37(3): 952−959.

    Li Y, Yu X B, Liu Y, et al. Response of wetland plant functional traits to hydrological processes: a review[J]. Chinese Journal of Ecology, 2018, 37(3): 952−959.
    [39]
    霍宏亮, 马庆华, 李京璟, 等. 中国榛属植物种质资源分布格局及其适生区气候评价[J]. 植物遗传资源学报, 2016, 17(5): 801−808.

    Huo H L, Ma Q H, Li J J, et al. Study on the distribution of Corylus L. in China and the climatic evaluation of the suitable areas[J]. Journal of Plant Genetic Resources, 2016, 17(5): 801−808.
    [40]
    李灿. 濒危植物崖柏潜在分布区预测与生境时空变化定量研究[D]. 成都: 成都理工大学, 2018.

    Li C. A quantitative study on the prediction of potential distribution area and temporal and spatial changes of habitats of thuja, an endangered plant[D]. Chengdu: Chengdu University of Technology, 2018.
    [41]
    陈敏鹏, 林而达. 代表性浓度路径情景下的全球温室气体减排和对中国的挑战[J]. 气候变化研究进展, 2010, 6(6): 436−442.

    Chen M P, Lin E D. Global greenhouse gas emission mitigation under representative concentration pathways scenarios and challenges to China[J]. Climate Change Research, 2010, 6(6): 436−442.
  • Related Articles

    [1]Liu Yang, Wang Hesong. Effects of climate change on distribution of suitable area of Pinus tabuliformis plantation in China[J]. Journal of Beijing Forestry University, 2024, 46(6): 82-92. DOI: 10.12171/j.1000-1522.20230072
    [2]Xu Jingya, Liu Tian, Zang Guozhang, Zheng Yiqi. Prediction of suitable areas of Eremochloa ophiuroides in China under different climate scenarios based on MaxEnt model[J]. Journal of Beijing Forestry University, 2024, 46(3): 91-102. DOI: 10.12171/j.1000-1522.20230022
    [3]He Xuegao, Liu Huan, Zhang Jing, Cheng Wei, Ding Peng, Jia Fengming, Li Qing, Liu Chao. Predicting potential suitable distribution areas for Juniperus przewalskii in Qinghai Province of northwestern China based on the optimized MaxEnt model[J]. Journal of Beijing Forestry University, 2023, 45(12): 19-31. DOI: 10.12171/j.1000-1522.20220515
    [4]Zhou Yuting, Ge Xuezhen, Zou Ya, Guo Siwei, Wang Tao, Tao Jing, Zong Shixiang. Prediction of the potential geographical distribution of Hylurgus ligniperda at the global scale and in China using the Maxent model[J]. Journal of Beijing Forestry University, 2022, 44(11): 90-99. DOI: 10.12171/j.1000-1522.20210345
    [5]Liu Jiaqi, Wei Guangkuo, Shi Changqing, Zhao Tingning, Qian Yunkai. Suitable distribution area of drought-resistant afforestation tree species in north China based on MaxEnt model[J]. Journal of Beijing Forestry University, 2022, 44(7): 63-77. DOI: 10.12171/j.1000-1522.20210527
    [6]Wang Yanjun, Gao Tai, Shi Juan. Prediction and analysis of the global suitability of Lymantria dispar based on MaxEnt[J]. Journal of Beijing Forestry University, 2021, 43(9): 59-69. DOI: 10.12171/j.1000-1522.20200416
    [7]Tang Yan, Zhao Runan, Ren Gang, Cao Fuliang, Zhu Zunling. Prediction of potential distribution of Lycium chinense based on MaxEnt model and analysis of its important influencing factors[J]. Journal of Beijing Forestry University, 2021, 43(6): 23-32. DOI: 10.12171/j.1000-1522.20200103
    [8]Tang Shupei, Mu Liguang, Wang Xiaoling, Zhang Jing, Liu Bo, Menghedalai, Bao Weidong. Habitat suitability assessment based on MaxEnt modeling of Chinese goral in Saihanwula National Nature Reserve, Inner Mongolia of northern China[J]. Journal of Beijing Forestry University, 2019, 41(1): 102-108. DOI: 10.13332/j.1000-1522.20180176
    [9]ZHANG Chun-hua, HE Ju, SUN Yong-yu, LI Kun. Distributional change in suitable areas for Toona sureni based on MaxEnt model[J]. Journal of Beijing Forestry University, 2017, 39(8): 33-41. DOI: 10.13332/j.1000-1522.20170002
    [10]ZHANG Chao, CHEN Lei, TIAN Cheng-ming, LI Tao, WANG Rong, YANG Qi-qing. Predicting the distribution of dwarf mistletoe (Arceuthobium sichuanense) with GARP and MaxEnt models[J]. Journal of Beijing Forestry University, 2016, 38(5): 23-32. DOI: 10.13332/j.1000-1522.20150516
  • Cited by

    Periodical cited type(5)

    1. 谢孟,张学星,罗燕,马永鹏,李伟,杨琳祥,柳文,赵培仙,李正红,马宏. 基于MaxEnt模型的云南干热河谷适生树种选择. 生态学报. 2024(09): 3689-3707 .
    2. 刘阳,王鹤松. 气候变化对我国油松人工林适生区分布的影响. 北京林业大学学报. 2024(06): 82-92 . 本站查看
    3. 徐亚兰,杨智敏,卢盛俊,周帆,周彭晨,王斌. 基于Maxent模型的湖南省白颈长尾雉适宜栖息地预测. 生命科学研究. 2024(03): 267-273 .
    4. 杨璐,刘小芳,巨佳敏,张秀敏,常富强,赵勇钢. 黄土坡面种植柠条对土壤团聚体稳定性和可蚀性的影响. 水土保持通报. 2024(03): 46-55 .
    5. 陈程浩,龙主多杰,陆徐伟,宋扎磋,苗琪,孙芳慧,索南吉. 基于优化MaxEnt模型的中国紫堇属植物生境适宜性研究. 生态学报. 2023(24): 10345-10362 .

    Other cited types(2)

Catalog

    Article views (814) PDF downloads (107) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return