Citation: | Meng Xiang, Pan Zhongyu, Chen Min. Identification and expression analysis of GST genes in response to quercetin induction in Hyphantria cunea[J]. Journal of Beijing Forestry University, 2023, 45(11): 110-118. DOI: 10.12171/j.1000-1522.20220181 |
Glutathione S-transferases (GSTs) are important detoxification enzymes in insects, playing an important role in the physiologhical adaptation of phytophagous insects to plant secondary substances. In this study, we screened and identified GST genes and analyzed their expression patterns induced by quercetin in Hyphantria cunea midgut, laying the foundation for elucidating the function of GST genes in detoxification and metabolism of quercetin in H. cunea.
Based on the quercetin-induced midgut transcriptome of H. cunea, the GST genes in response to quercetin induction were screened and identified. The family categories of GST genes were analyzed by constructing phylogenetic tree. The dose effect and time effect of quercetin on GST gene induction were studied by real-time fluorescence quantitative PCR.
Six GST genes were identified from the gut in response to quercetin induction. Phylogenetic analysis showed that HcGST-E1, HcGST-E2 and HcGST-E3 belong to the GST Epsilon family, HcGST-S1 and HcGST-S2 belong to the GST Sigma family, and HcGST-O1 belongs to the GST Omega family. Various mass fraction of quercetin had different induction effects on GST genes. The tested mass fraction of quercetin (0.5%, 1.0%, 2.0% and 4.0%) significantly up-regulated HcGST-E1 expression, below 2.0% of quercetin significantly increased HcGST-E3 expression, and 0.5% quercetin significantly enhanced HcGST-O1 expression. By contrast, the tested mass fraction of quercetin significantly induced the down-regulation of the expression level of HcGST-S1 and 0.5% and 1.0% of quercetin significantly down-regulated the expression level of HcGST-S2. Three up-regulated GST genes were significantly up-regulated within 24 h or 36 h by quercetin.
Quercetin could significantly induce the expression levels of six GST genes in the midgut of H. cunea, but the expression patterns are various for each induced gene. HcGST-E1, HcGST-E3 and HcGST-O1 are significantly up-regulated in response to the quercetin induction. It is, therefore, speculated that these 3 genes are the key genes involved in the detoxification of quercetin in H. cunea.
[1] |
Treutter D. Significance of flavonoids in plant resistance: a review[J]. Environmental Chemistry Letters, 2006, 4(3): 147−157. doi: 10.1007/s10311-006-0068-8
|
[2] |
Sharma R, Sohal S K. Bioefficacy of quercetin against melon fruit fly[J]. Bulletin of Insectology, 2013, 66(1): 79−83.
|
[3] |
Li Z, Guan X, Michaud J P, et al. Quercetin interacts with Cry1Ac protein to affect larval growth and survival of Helicoverpa armigera[J]. Pest Management Science, 2016, 72(7): 1359−1365. doi: 10.1002/ps.4160
|
[4] |
Cui B, Huang X, Li S, et al. Quercetin affects the growth and development of the grasshopper Oedaleus asiaticus (Orthoptera: Acrididae)[J]. Journal of Economic Entomology, 2019, 112(3): 1175−1182. doi: 10.1093/jee/toz050
|
[5] |
陈澄宇, 康志娇, 史雪岩, 等. 昆虫对植物次生物质的代谢适应机制及其对昆虫抗药性的意义[J]. 昆虫学报, 2015, 58(10): 1126−1139. doi: 10.16380/j.kcxb.2015.10.011
Chen C Y, Kang Z J, Shi X Y, et al. Metabolic adaptation mechanisms of insects to plant secondary metabolites and their implications for insecticide resistance of insects[J]. Acta Entomologica Sinica, 2015, 58(10): 1126−1139. doi: 10.16380/j.kcxb.2015.10.011
|
[6] |
Sheehan D, Meade G, Foley V M, et al. Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily[J]. Biochemical Journal, 2001, 360(1): 1−16. doi: 10.1042/bj3600001
|
[7] |
张常忠, 高希武, 郑炳宗. 棉铃虫谷胱甘肽S-转移酶的活性分布和发育期变化及植物次生物质的诱导作用[J]. 农药学学报, 2001, 3(1): 30−35. doi: 10.3321/j.issn:1008-7303.2001.01.006
Zhang C Z, Gao X W, Zheng B Z. Glutathione S-transferases (GSTs) in Helicoverpa armigera: subcellular and tissue distribution of activity, developmental changes and induction of allelochemicals[J]. Chinese Journal of Applied Entomology, 2001, 3(1): 30−35. doi: 10.3321/j.issn:1008-7303.2001.01.006
|
[8] |
Hayes J D, Flanagan J U, Jowsey I R. Glutathione transferases[J]. Annual Review of Pharmacology and Toxicology, 2005, 45: 51−88. doi: 10.1146/annurev.pharmtox.45.120403.095857
|
[9] |
高希武, 董向丽, 郑炳宗, 等. 棉铃虫的谷胱甘肽S-转移酶(GSTs): 杀虫药剂和植物次生性物质的诱导与GSTs对杀虫药剂的代谢[J]. 昆虫学报, 1997, 40(2): 122−127. doi: 10.3321/j.issn:0454-6296.1997.02.002
Gao X W, Dong X L, Zheng B Z, et al. Glutathione S-transferases (GST) of Helicoverpa armigera: induction of insecticides and plant secondary substances and metabolism of insecticides by GST[J]. Acta Entomologica Sinica, 1997, 40(2): 122−127. doi: 10.3321/j.issn:0454-6296.1997.02.002
|
[10] |
汤方, 梁沛, 高希武. 2-十三烷酮和槲皮素诱导棉铃虫谷胱甘肽S-转移酶组织特异性表达[J]. 自然科学进展, 2005, 15(7): 805−810. doi: 10.3321/j.issn:1002-008X.2005.07.006
Tang F, Liang P, Gao X W. Tissue specific expression of glutathione S-transferase in Helicoverpa armigera induced by 2-tridecanone and quercetin[J]. Progress in Natural Science, 2005, 15(7): 805−810. doi: 10.3321/j.issn:1002-008X.2005.07.006
|
[11] |
Zhang Y E, Ma H J, Feng D D, et al. Induction of detoxification enzymes by quercetin in the silkworm[J]. Journal of Economic Entomology, 2012, 105(3): 1034−1042. doi: 10.1603/EC11287
|
[12] |
牟少飞, 梁沛, 高希武. 槲皮素对B型烟粉虱羧酸酯酶和谷胱甘肽S-转移酶活性的影响[J]. 昆虫知识, 2006, 43(4): 491−495.
Mou S F, Liang P, Gao X W. Effects of quercetin on specific activity of carboxylesterase and glutathione S-transferases in Bemisia tabaci[J]. Chinese Journal of Applied Entomology, 2006, 43(4): 491−495.
|
[13] |
汤方, 周玉宝, 张秀波, 等. 2-十三烷酮和槲皮素对杨小舟蛾谷胱甘肽S-转移酶活性的影响[J]. 植物保护学报, 2009, 36(4): 377−378. doi: 10.13802/j.cnki.zwbhxb.2009.04.019
Tang F, Zhou Y B, Zhang X B, et al. The effect on glutathione S-transferases by 2-tridecanone and quercetin in Micromelalopha trogiodyta (Lepidoptera: Notodontidae)[J]. Acta Entomologica Sinica, 2009, 36(4): 377−378. doi: 10.13802/j.cnki.zwbhxb.2009.04.019
|
[14] |
萧刚柔, 李镇宇. 中国森林昆虫[M]. 3版.北京: 中国林业出版社, 2020.
Xiao G R, Li Z Y. Chinese forest insects[M]. 3rd ed. Beijing: China Forestry Publishing House, 2020.
|
[15] |
杨忠岐, 张永安. 重大外来入侵害虫: 美国白蛾生物防治技术研究[J]. 昆虫知识, 2007, 44(4): 465−471.
Yang Z Q, Zhang Y A. Researches on techniques for biocontrol of the fall webworm, Hyphantria cunea, a severe invasive insect pest to China[J]. Chinese Bulletin of Entomology, 2007, 44(4): 465−471.
|
[16] |
Sullivan G, Ozman-Sullivan S. Tachinid (Diptera) parasitoids of Hyphantria cunea (Lepidoptera: Arctiidae) in its native North America and in Europe and Asia: a literature review[J]. Entomologica Fennica, 2012, 23: 181−192
|
[17] |
刘海军, 骆有庆, 温俊宝, 等. 北京地区红脂大小蠹、美国白蛾和锈色粒肩天牛风险评价[J]. 北京林业大学学报, 2005, 27(2): 81−87.
Liu H J, Luo Y Q , Wen J B, et al. Pest risk assessment of Dendroctonus valens, Hyphantria cunea and Apriona swainsoni in Beijing area[J]. Journal of Beijing Forestry University, 2005, 27(2): 81−87.
|
[18] |
潘忠玉. 3 种次生代谢物对美国白蛾幼虫生长发育及解毒酶活性的影响[D]. 北京: 北京林业大学, 2020.
Pan Z Y. Effects of three secondary metabolites on the growth and development and detoxification enzyme activities in Hyphantria cunea (Lepidoptera: Arctiidae) [J]. Beijing: Beijing Forestry University, 2020.
|
[19] |
蒋立娣, 宣贵达, 吴好好, 等. 桑叶提取物中槲皮素和山萘酚的含量测定[J]. 浙江大学学报 (理学版), 2009, 36(6): 705−707.
Jiang L D, Xuan G D, Wu H H, et al. Determination of quercetin and kaempferol in folium mori extract after hydrolysis by hydrochloric acid[J]. Journal of Zhejiang University (Science Edition), 2009, 36(6): 705−707.
|
[20] |
王海燕, 杨金龙, 谷山林, 等. 桑叶槲皮素提取物抗氧化活性研究[J]. 丝绸, 2018, 55(3): 15−20. doi: 10.3969/j.issn.1001-7003.2018.03.003
Wang H Y, Yang J L, Gu S L, et al. Study on antioxidant activity of quercetin extract from mulberry leaves[J]. Silk, 2018, 55(3): 15−20. doi: 10.3969/j.issn.1001-7003.2018.03.003
|
[21] |
曹利军, 杨帆, 唐思莹, 等. 适合三种鳞翅目昆虫的一种人工饲料配方[J]. 应用昆虫学报, 2014, 51(5): 1376−1386.
Cao L J, Yang F, Tang S Y, et al. Development of an artificial diet for three lepidopteran insects[J]. Chinese Journal of Applied Entomology, 2014, 51(5): 1376−1386.
|
[22] |
Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms[J]. Molecular Biology and Evolution, 2018, 35(6): 1547. doi: 10.1093/molbev/msy096
|
[23] |
Zhang D, Gao F, Jakovlić I, et al. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies[J]. Molecular Ecology Resources, 2020, 20: 348−55 doi: 10.1111/1755-0998.13096
|
[24] |
Nguyen L T, Schmidt H A, Haeseler A V, et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies[J]. Molecular Biology and Evolution, 2014, 32: 268−74.
|
[25] |
Guindon S, Dufayard J F, Lefort V, et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of phyml 3.0[J]. Systematic Biology, 2010, 59: 307−321. doi: 10.1093/sysbio/syq010
|
[26] |
Minh B Q, Nguyen M, Haeseler A V. Ultrafast approximation for phylogenetic bootstrap[J]. Molecular Biology and Evolution, 2013, 30: 1188−1195. doi: 10.1093/molbev/mst024
|
[27] |
陶蓉, 李慧, 孙宇航, 等. 美国白蛾内参基因的鉴定及筛选[J]. 林业科学, 2019, 55(9): 111−120.
Tao R, Li H, Sun Y H, et al. Indentification and screening of internal reference genes of Hyphantria cunea (Lepidoptera: Arctiidae)[J]. Scientia Silvae Sinicae, 2019, 55(9): 111−120.
|
[28] |
Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method[J]. Methods, 2001, 25: 402−408 doi: 10.1006/meth.2001.1262
|
[29] |
Enayati A A, Ranson H, Hemingway J. Insect glutathione transferases and insecticide resistance[J]. Insect Molecular Biology, 2005, 14(1): 3−8. doi: 10.1111/j.1365-2583.2004.00529.x
|
[30] |
Ranson H, Rossiter L, Ortelli F, et al. Identification of a novel class of insect glutathione S-transferases involved in resistance to DDT in the malaria vector Anopheles gambiae[J]. Biochemical Journal, 2001, 359(2): 295−304. doi: 10.1042/bj3590295
|
[31] |
Qin G, Jia M, Liu T, et al. Identification and characterisation of ten glutathione S-transferase genes from oriental migratory locust, Locusta migratoria manilensis (Meyen)[J]. Pest Management Science, 2011, 67(6): 697−704. doi: 10.1002/ps.2110
|
[32] |
Sun L, Yin J, Du H, et al. Characterisation of GST genes from the Hyphantria cunea and their response to the oxidative stress caused by the infection of Hyphantria cunea nucleopolyhedrovirus (HcNPV)[J]. Pesticide Biochemistry and Physiology, 2020, 163: 254−262. doi: 10.1016/j.pestbp.2019.11.019
|
[33] |
Feng K, Luo J, Ding X, et al. Transcriptome analysis and response of three important detoxifying enzymes to Serratia marcescens Bizio (SM1) in Hyphantria cunea (Drury) (Lepidoptera: Noctuidae)[J]. Pesticide Biochemistry and Physiology, 2021, 178: 104922. doi: 10.1016/j.pestbp.2021.104922
|
[34] |
Yamamoto K, Fujii H, Aso Y, et al. Expression and characterization of a sigma-class glutathione S-transferase of the fall webworm, Hyphantria cunea[J]. Bioscience, Biotechnology, and Biochemistry, 2007, 71(2): 553−560. doi: 10.1271/bbb.60592
|
[35] |
Yamamoto K, Zhang P B, Banno Y, et al. Identification of a sigma-class glutathione-S-transferase from the silkworm, Bombyx mori[J]. Journal of Applied Entomology, 2006, 130(9−10): 515−522.
|
[36] |
Tang F, Tu H, Shang Q, et al. Molecular cloning and characterization of five glutathione S-transferase genes and promoters from Micromelalopha troglodyta (Graeser) (Lepidoptera: Notodontidae) and their response to tannic acid stress[J]. Insects, 2020, 11(6): 339. doi: 10.3390/insects11060339
|
[37] |
张婷, 卫正国, 高瑞娜, 等. 芸香苷诱导家蚕谷胱甘肽-S-转移酶 omega 家族基因的表达变化[J]. 蚕业科学, 2011, 37(2): 224−229. doi: 10.3969/j.issn.0257-4799.2011.02.007
Zhang T, Wei Z G, Gao R N, et al. Variation of rutin-induced expression of Glutathione-S-transferase omega family genes in Bombyx mori[J]. Science of Sericulture, 2011, 37(2): 224−229. doi: 10.3969/j.issn.0257-4799.2011.02.007
|
[38] |
张婷, 卫正国, 高瑞娜, 等. 芸香苷对家蚕谷胱甘肽-S-转移酶部分基因的诱导表达[J]. 昆虫学报, 2011, 54(1): 20−26. doi: 10.16380/j.kcxb.2011.01.009
Zhang T, Wei Z G, Gao R N, et al. Induction of expression of partial glutathione-S-transferase genes in Bombyx mori by rutin[J]. Acta Entomologica Sinica, 2011, 54(1): 20−26. doi: 10.16380/j.kcxb.2011.01.009
|
[39] |
马康, 邹晓鹏, 岑永杰, 等. Sli-miR-34-5p 响应植物次生物质正调控斜纹夜蛾谷胱甘肽 S-转移酶基 SlGSTe1的表达[J]. 昆虫学报, 2019, 62(1): 1−8.
Ma K, Zou X P, Cen Y J, et al. Sli-miR-34-5p positively regulates the expression of the glutathione S-transferase gene SlGSTe1 in Spodoptera litura (Lepidoptera: Noctuidae) in response to secondary plant substances[J]. Acta Entomologica Sinica, 2019, 62(1): 1−8.
|
[40] |
岑永杰, 邹晓鹏, 郑思春. miR-305-3p 和 miR-71-5p 通过调控谷胱甘肽代谢途径参与斜纹夜蛾应对植物次生物质[J]. 环境昆虫学报, 2019, 41(1): 33−41.
Cen Y J, Zou X P, Zheng S C. MiR-305-3p and miR-71-5p involve in Spodoptera litura responding to phytochemical by regulating glutathione metabolism pathway[J]. Journal of Environmental Entomology, 2019, 41(1): 33−41.
|
[41] |
Ma J, Sun L, Zhao H, et al. Functional identification and characterization of GST genes in the Asian gypsy moth in response to poplar secondary metabolites[J]. Pesticide Biochemistry and Physiology, 2021, 176: 104860. doi: 10.1016/j.pestbp.2021.104860
|
[42] |
齐琪, 孙丽丽, 许力山, 等. RNAi分析舞毒蛾谷胱甘肽S-转移酶(GST)基因对黄酮和槲皮素胁迫响应[J]. 环境昆虫学报, 2021, 43(6): 1359−1367. doi: 10.3969/j.issn.1674-0858.2021.06.03
Qi Q, Sun L L, Xu L S, et al. Response of glutathione S-transferase (GST) genes in Lymantria dispar to flavone and quercetin stresses based on RNAi analysis[J]. Journal of Environmental Entomology, 2021, 43(6): 1359−1367. doi: 10.3969/j.issn.1674-0858.2021.06.03
|
[43] |
Han J B, Li G Q, Wan P J, et al. Identification of glutathione S-transferase genes in Leptinotarsa decemlineata and their expression patterns under stress of three insecticides[J]. Pesticide Biochemistry and Physiology, 2016, 133: 26−34. doi: 10.1016/j.pestbp.2016.03.008
|