Citation: | He Linhan, Ling Kaili, Ren Ruiqing, Chen Yao, Gao Jianmin. Properties of wood-based composite phase change heat storage materials with Cu particles to enhance heat conduction[J]. Journal of Beijing Forestry University, 2022, 44(12): 132-141. DOI: 10.12171/j.1000-1522.20220228 |
[1] |
Huang X, Chen X, Li A, et al. Shape-stabilized phase change materials based on porous supports for thermal energy storage applications[J]. Chemical Engineering Journal, 2019, 356: 641−661. doi: 10.1016/j.cej.2018.09.013
|
[2] |
Gulfam R, Zhang P, Meng Z. Advanced thermal systems driven by paraffin-based phase change materials: a review[J]. Applied Energy, 2019, 238: 582−611. doi: 10.1016/j.apenergy.2019.01.114
|
[3] |
Kahwaji S, Johnson M B, Kheirabadi A C, et al. A comprehensive study of properties of paraffin phase change materials for solar thermal energy storage and thermal management applications[J]. Energy, 2018, 162: 1169−1182. doi: 10.1016/j.energy.2018.08.068
|
[4] |
Lin Y, Zhu C, Alva G, et al. Microencapsulation and thermal properties of myristic acid with ethyl cellulose shell for thermal energy storage[J]. Applied Energy, 2018, 231: 494−501. doi: 10.1016/j.apenergy.2018.09.154
|
[5] |
Heyhat M M, Mousavi S, Siavashi M. Battery thermal management with thermal energy storage composites of PCM, metal foam, fin and nanoparticle[J]. Journal of Energy Storage, 2020, 28: 101235. doi: 10.1016/j.est.2020.101235
|
[6] |
Fan L, Khodadadi J M. Thermal conductivity enhancement of phase change materials for thermal energy storage: a review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(1): 24−46. doi: 10.1016/j.rser.2010.08.007
|
[7] |
Sarı A, Hekimoğlu G, Tyagi V V. Low cost and eco-friendly wood fiber-based composite phase change material: development, characterization and lab-scale thermoregulation performance for thermal energy storage[J]. Energy, 2020, 195: 116983. doi: 10.1016/j.energy.2020.116983
|
[8] |
Xia R, Zhang W, Yang Y, et al. Transparent wood with phase change heat storage as novel green energy storage composites for building energy conservation[J]. Journal of Cleaner Production, 2021, 296: 126598. doi: 10.1016/j.jclepro.2021.126598
|
[9] |
Meng Y, Majoinen J, Zhao B, et al. Form-stable phase change materials from mesoporous balsa after selective removal of lignin[J]. Composites Part B: Engineering, 2020, 199: 108296. doi: 10.1016/j.compositesb.2020.108296
|
[10] |
Yang H, Wang Y, Yu Q, et al. Low-cost, three-dimension, high thermal conductivity, carbonized wood-based composite phase change materials for thermal energy storage[J]. Energy, 2018, 159: 929−936. doi: 10.1016/j.energy.2018.06.207
|
[11] |
Zhou M, Wang J, Zhao Y, et al. Hierarchically porous wood-derived carbon scaffold embedded phase change materials for integrated thermal energy management, electromagnetic interference shielding and multifunctional application[J]. Carbon, 2021, 183: 515−524. doi: 10.1016/j.carbon.2021.07.051
|
[12] |
Lin X, Jia S, Liu J, et al. Fabrication of thermal energy storage wood based on graphene aerogel encapsulated polyethylene glycol as phase change material[J]. Materials Research Express, 2020, 7(9): 095503. doi: 10.1088/2053-1591/abb261
|
[13] |
孟杨. 木基定型复合相变材料的构筑与功能强化[D]. 北京: 北京林业大学, 2021.
Meng Y. Preparation and multifunctional innovation of wood-based form-stable composite phase change materials[D]. Beijing: Beijing Forestry University, 2021.
|
[14] |
刘杰梅, 王宁, 宋亚伟, 等. 赤藻糖醇基相变材料热性能的实验研究[J]. 现代化工, 2020, 40(6): 66−71.
Liu J M, Wang N, Song Y W, et al. Experimental study on thermal properties of erythritol-based phase change materials[J]. Modern Chemical Industry, 2020, 40(6): 66−71.
|
[15] |
刘文静, 张玉君. 细胞壁空隙对木材性能及加工利用的影响[J]. 世界林业研究, 2021, 34(2): 44−48.
Liu W J, Zhang Y J. Effects of pore structure in cell wall on wood properties and processing utilization[J]. World Forestry Research, 2021, 34(2): 44−48.
|
[16] |
Wu S. Preparation of fine copper powder using ascorbic acid as reducing agent and its application in MLCC[J]. Materials Letters, 2007, 61(4−5): 1125−1129. doi: 10.1016/j.matlet.2006.06.068
|
[17] |
唐爽, 孙照斌, 马长明. 冀北山区不同坡向白桦木材解剖特性径向变异研究[J]. 西南林业大学学报(自然科学), 2018, 38(3): 157−165.
Tang S, Sun Z B, Ma C M. Radial variation of anatomical properties of Betula platyphylla wood in different slope directions of northern Hebei Province[J]. Journal of Southwest Forestry University (Natural Sciences), 2018, 38(3): 157−165.
|
[18] |
周凡, 高鑫, 付宗营, 等. 黑木相思木材化学组分对其颜色株内变异的影响[J]. 中南林业科技大学学报, 2021, 41(6): 42−50.
Zhou F, Gao X, Fu Z Y, et al. Effect of chemical components on wood color variation of Acacia melanoxylon[J]. Journal of Central South University of Forestry & Technology, 2021, 41(6): 42−50.
|
[19] |
李柬龙, 陈胜, 李海潮, 等. 轻木细胞壁超微结构与力学性能关系研究[J]. 北京林业大学学报, 2022, 44(2): 115−122. doi: 10.12171/j.1000-1522.20210410
Li J L, Chen S, Li H C, et al. Relationship between cell wall ultrastructure and mechanical properties of balsa wood[J]. Journal of Beijing Forestry University, 2022, 44(2): 115−122. doi: 10.12171/j.1000-1522.20210410
|
[20] |
张仲彬, 朱长林. 碳纳米管–氮化硼/肉豆蔻酸复合相变材料的蓄热性能研究[J]. 中国电机工程学报, 2021, 41(13): 4585−4594.
Zhang Z B, Zhu C L. Study on the Thermal storage performance for carbon nanotubes-boron nitride/myristic acid composite phase change material[J]. Proceedings of the Chinese Society for Electrical Engineering, 2021, 41(13): 4585−4594.
|
[21] |
Zhang Y, Zheng S, Zhu S, et al. Evaluation of paraffin infiltrated in various porous silica matrices as shape-stabilized phase change materials for thermal energy storage[J]. Energy Conversion and Management, 2018, 171: 361−370. doi: 10.1016/j.enconman.2018.06.002
|
[22] |
Wang C, Feng L, Li W, et al. Shape-stabilized phase change materials based on polyethylene glycol/porous carbon composite: the influence of the pore structure of the carbon materials[J]. Solar Energy Materials and Solar Cells, 2012, 105: 21−26. doi: 10.1016/j.solmat.2012.05.031
|
[23] |
Li Y, Li X, Liu D, et al. Fabrication and properties of polyethylene glycol-modified wood composite for energy storage and conversion[J]. BioResources, 2016, 11(3): 7790−7802.
|
[24] |
Jiang L, Lei Y, Liu Q, et al. Facile preparation of polyethylene glycol/wood-flour composites as form-stable phase change materials for thermal energy storage[J]. Journal of Thermal Analysis and Calorimetry, 2019, 139(1): 137−146.
|
[25] |
Pan X, Zhang N, Yuan Y, et al. Balsa-based porous carbon composite phase change material with photo-thermal conversion performance for thermal energy storage[J]. Solar Energy, 2021, 230: 269−277. doi: 10.1016/j.solener.2021.10.046
|
[26] |
Chao W, Yang H, Cao G, et al. Carbonized wood flour matrix with functional phase change material composite for magnetocaloric-assisted photothermal conversion and storage[J]. Energy, 2020, 202: 117636. doi: 10.1016/j.energy.2020.117636
|
[27] |
Li J, Xue P, Ding W, et al. Micro-encapsulated paraffin/high-density polyethylene/wood flour composite as form-stable phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2009, 93(10): 1761−1767. doi: 10.1016/j.solmat.2009.06.007
|
[28] |
Yang H, Wang Y, Liu Z, et al. Enhanced thermal conductivity of waste sawdust-based composite phase change materials with expanded graphite for thermal energy storage[J]. Bioresources and Bioprocessing, 2017, 4(1): 1−12. doi: 10.1186/s40643-016-0134-4
|
1. |
刘芮,王振兴,张文静,张生德,张清华. 储热材料研究现状及相变储热研究进展. 电机与控制应用. 2024(02): 44-60 .
![]() | |
2. |
陈松武,黄海英,禤示青,刘晓玲,陈桂丹,王浏浏. “双碳”背景下木材加工产业的发展重点与方向的研讨. 浙江林业科技. 2024(04): 112-116 .
![]() | |
3. |
韦溶军,王志闯,王雪纯,王婷欢,王振宇,何正斌,伊松林. 锡铋合金/肉豆蔻酸制备具有金属外壳的储能木材. 北京林业大学学报. 2024(08): 25-33 .
![]() | |
4. |
庞群艳,胡纲正,李文轩,贺磊,邱竑韫,黄慧,何文. 纳米铜热处理竹材制备及其防霉性能. 林业工程学报. 2024(06): 37-43 .
![]() | |
5. |
鲍伟,王胜捷,蒲万兴,宋子豪. 复合相变材料导热性能与套管式相变储热单元翅片结构优化. 农业工程学报. 2024(23): 303-312 .
![]() | |
6. |
何林韩,刘晓玲,陈松武,罗玉芬,王浏浏. 木质基复合相变材料的研究现状与发展趋势. 化工新型材料. 2023(S2): 525-531 .
![]() |