• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
He Linhan, Ling Kaili, Ren Ruiqing, Chen Yao, Gao Jianmin. Properties of wood-based composite phase change heat storage materials with Cu particles to enhance heat conduction[J]. Journal of Beijing Forestry University, 2022, 44(12): 132-141. DOI: 10.12171/j.1000-1522.20220228
Citation: He Linhan, Ling Kaili, Ren Ruiqing, Chen Yao, Gao Jianmin. Properties of wood-based composite phase change heat storage materials with Cu particles to enhance heat conduction[J]. Journal of Beijing Forestry University, 2022, 44(12): 132-141. DOI: 10.12171/j.1000-1522.20220228

Properties of wood-based composite phase change heat storage materials with Cu particles to enhance heat conduction

More Information
  • Received Date: June 09, 2022
  • Revised Date: October 27, 2022
  • Available Online: October 31, 2022
  • Published Date: December 24, 2023
  •   Objective  Although high thermal conductivity fillers can improve the heat storage and release rate of wood-based phase change heat storage composite materials. The agglomeration of nanoparticles is not conducive to their uniform dispersion in the material. The purpose of this paper is to use the solution reduction method to in-situ generate monodisperse copper particles in the balsa wood (Ochroma pyramidale) matrix from the inside to outside, so as to develop a green and economic way to improve the heat storage and release properties of phase change heat storage wood-based composite materials.
      Method  Firstly, the balsa wood was delignified with acid sodium chlorite solution to improve the packaging efficiency of phase change materials. Then, the monodisperse Cu particles were prepared by the solution reduction method in delignified balsa wood with CuSO4 solution and ascorbic acid solution by cyclic reaction, and the paraffin wax (PW) was added to the wood-based composite by vacuum impregnation method. Field emission electron microscope (SEM), infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimeter (DSC), thermal conductivity tester and temperature inspection instrument were used to evaluate the microstructure, crystallization, chemical structure and heat storage and release properties of the materials.
      Result  After delignification, the encapsulation efficiency of balsa wood increased from 64.9% to 82.6%. After the reduction of Cu2+ by ascorbic acid, Cu was produced in-situ in the balsa wood matrix. However, if the number of cycles was too small, Cu can not be evenly distributed in the wood matrix, and if the number of cycles was too large, the packaging effect of balsa wood on phase change materials will be excessively affected. The three cycles were the most appropriate. The thermal conductivity of the composite phase change heat storage material prepared by this method was increased by 1.76 times, the melting and solidification latent heat were as high as 143.7 and 142.9 J/g, respectively, and the heat storage and heat release time were shortened by 23.7% and 32.6%, respectively, showing a better potential for temperature regulation.
      Conclusion  The solution reduction method can effectively prepare Cu particles uniformly in the balsa wood matrix, and the wood-based composite phase change heat storage material with Cu particles prepared by three cycles to enhance heat conduction has good heat storage and release performance.
  • [1]
    Huang X, Chen X, Li A, et al. Shape-stabilized phase change materials based on porous supports for thermal energy storage applications[J]. Chemical Engineering Journal, 2019, 356: 641−661. doi: 10.1016/j.cej.2018.09.013
    [2]
    Gulfam R, Zhang P, Meng Z. Advanced thermal systems driven by paraffin-based phase change materials: a review[J]. Applied Energy, 2019, 238: 582−611. doi: 10.1016/j.apenergy.2019.01.114
    [3]
    Kahwaji S, Johnson M B, Kheirabadi A C, et al. A comprehensive study of properties of paraffin phase change materials for solar thermal energy storage and thermal management applications[J]. Energy, 2018, 162: 1169−1182. doi: 10.1016/j.energy.2018.08.068
    [4]
    Lin Y, Zhu C, Alva G, et al. Microencapsulation and thermal properties of myristic acid with ethyl cellulose shell for thermal energy storage[J]. Applied Energy, 2018, 231: 494−501. doi: 10.1016/j.apenergy.2018.09.154
    [5]
    Heyhat M M, Mousavi S, Siavashi M. Battery thermal management with thermal energy storage composites of PCM, metal foam, fin and nanoparticle[J]. Journal of Energy Storage, 2020, 28: 101235. doi: 10.1016/j.est.2020.101235
    [6]
    Fan L, Khodadadi J M. Thermal conductivity enhancement of phase change materials for thermal energy storage: a review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(1): 24−46. doi: 10.1016/j.rser.2010.08.007
    [7]
    Sarı A, Hekimoğlu G, Tyagi V V. Low cost and eco-friendly wood fiber-based composite phase change material: development, characterization and lab-scale thermoregulation performance for thermal energy storage[J]. Energy, 2020, 195: 116983. doi: 10.1016/j.energy.2020.116983
    [8]
    Xia R, Zhang W, Yang Y, et al. Transparent wood with phase change heat storage as novel green energy storage composites for building energy conservation[J]. Journal of Cleaner Production, 2021, 296: 126598. doi: 10.1016/j.jclepro.2021.126598
    [9]
    Meng Y, Majoinen J, Zhao B, et al. Form-stable phase change materials from mesoporous balsa after selective removal of lignin[J]. Composites Part B: Engineering, 2020, 199: 108296. doi: 10.1016/j.compositesb.2020.108296
    [10]
    Yang H, Wang Y, Yu Q, et al. Low-cost, three-dimension, high thermal conductivity, carbonized wood-based composite phase change materials for thermal energy storage[J]. Energy, 2018, 159: 929−936. doi: 10.1016/j.energy.2018.06.207
    [11]
    Zhou M, Wang J, Zhao Y, et al. Hierarchically porous wood-derived carbon scaffold embedded phase change materials for integrated thermal energy management, electromagnetic interference shielding and multifunctional application[J]. Carbon, 2021, 183: 515−524. doi: 10.1016/j.carbon.2021.07.051
    [12]
    Lin X, Jia S, Liu J, et al. Fabrication of thermal energy storage wood based on graphene aerogel encapsulated polyethylene glycol as phase change material[J]. Materials Research Express, 2020, 7(9): 095503. doi: 10.1088/2053-1591/abb261
    [13]
    孟杨. 木基定型复合相变材料的构筑与功能强化[D]. 北京: 北京林业大学, 2021.

    Meng Y. Preparation and multifunctional innovation of wood-based form-stable composite phase change materials[D]. Beijing: Beijing Forestry University, 2021.
    [14]
    刘杰梅, 王宁, 宋亚伟, 等. 赤藻糖醇基相变材料热性能的实验研究[J]. 现代化工, 2020, 40(6): 66−71.

    Liu J M, Wang N, Song Y W, et al. Experimental study on thermal properties of erythritol-based phase change materials[J]. Modern Chemical Industry, 2020, 40(6): 66−71.
    [15]
    刘文静, 张玉君. 细胞壁空隙对木材性能及加工利用的影响[J]. 世界林业研究, 2021, 34(2): 44−48.

    Liu W J, Zhang Y J. Effects of pore structure in cell wall on wood properties and processing utilization[J]. World Forestry Research, 2021, 34(2): 44−48.
    [16]
    Wu S. Preparation of fine copper powder using ascorbic acid as reducing agent and its application in MLCC[J]. Materials Letters, 2007, 61(4−5): 1125−1129. doi: 10.1016/j.matlet.2006.06.068
    [17]
    唐爽, 孙照斌, 马长明. 冀北山区不同坡向白桦木材解剖特性径向变异研究[J]. 西南林业大学学报(自然科学), 2018, 38(3): 157−165.

    Tang S, Sun Z B, Ma C M. Radial variation of anatomical properties of Betula platyphylla wood in different slope directions of northern Hebei Province[J]. Journal of Southwest Forestry University (Natural Sciences), 2018, 38(3): 157−165.
    [18]
    周凡, 高鑫, 付宗营, 等. 黑木相思木材化学组分对其颜色株内变异的影响[J]. 中南林业科技大学学报, 2021, 41(6): 42−50.

    Zhou F, Gao X, Fu Z Y, et al. Effect of chemical components on wood color variation of Acacia melanoxylon[J]. Journal of Central South University of Forestry & Technology, 2021, 41(6): 42−50.
    [19]
    李柬龙, 陈胜, 李海潮, 等. 轻木细胞壁超微结构与力学性能关系研究[J]. 北京林业大学学报, 2022, 44(2): 115−122. doi: 10.12171/j.1000-1522.20210410

    Li J L, Chen S, Li H C, et al. Relationship between cell wall ultrastructure and mechanical properties of balsa wood[J]. Journal of Beijing Forestry University, 2022, 44(2): 115−122. doi: 10.12171/j.1000-1522.20210410
    [20]
    张仲彬, 朱长林. 碳纳米管–氮化硼/肉豆蔻酸复合相变材料的蓄热性能研究[J]. 中国电机工程学报, 2021, 41(13): 4585−4594.

    Zhang Z B, Zhu C L. Study on the Thermal storage performance for carbon nanotubes-boron nitride/myristic acid composite phase change material[J]. Proceedings of the Chinese Society for Electrical Engineering, 2021, 41(13): 4585−4594.
    [21]
    Zhang Y, Zheng S, Zhu S, et al. Evaluation of paraffin infiltrated in various porous silica matrices as shape-stabilized phase change materials for thermal energy storage[J]. Energy Conversion and Management, 2018, 171: 361−370. doi: 10.1016/j.enconman.2018.06.002
    [22]
    Wang C, Feng L, Li W, et al. Shape-stabilized phase change materials based on polyethylene glycol/porous carbon composite: the influence of the pore structure of the carbon materials[J]. Solar Energy Materials and Solar Cells, 2012, 105: 21−26. doi: 10.1016/j.solmat.2012.05.031
    [23]
    Li Y, Li X, Liu D, et al. Fabrication and properties of polyethylene glycol-modified wood composite for energy storage and conversion[J]. BioResources, 2016, 11(3): 7790−7802.
    [24]
    Jiang L, Lei Y, Liu Q, et al. Facile preparation of polyethylene glycol/wood-flour composites as form-stable phase change materials for thermal energy storage[J]. Journal of Thermal Analysis and Calorimetry, 2019, 139(1): 137−146.
    [25]
    Pan X, Zhang N, Yuan Y, et al. Balsa-based porous carbon composite phase change material with photo-thermal conversion performance for thermal energy storage[J]. Solar Energy, 2021, 230: 269−277. doi: 10.1016/j.solener.2021.10.046
    [26]
    Chao W, Yang H, Cao G, et al. Carbonized wood flour matrix with functional phase change material composite for magnetocaloric-assisted photothermal conversion and storage[J]. Energy, 2020, 202: 117636. doi: 10.1016/j.energy.2020.117636
    [27]
    Li J, Xue P, Ding W, et al. Micro-encapsulated paraffin/high-density polyethylene/wood flour composite as form-stable phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2009, 93(10): 1761−1767. doi: 10.1016/j.solmat.2009.06.007
    [28]
    Yang H, Wang Y, Liu Z, et al. Enhanced thermal conductivity of waste sawdust-based composite phase change materials with expanded graphite for thermal energy storage[J]. Bioresources and Bioprocessing, 2017, 4(1): 1−12. doi: 10.1186/s40643-016-0134-4
  • Cited by

    Periodical cited type(6)

    1. 刘芮,王振兴,张文静,张生德,张清华. 储热材料研究现状及相变储热研究进展. 电机与控制应用. 2024(02): 44-60 .
    2. 陈松武,黄海英,禤示青,刘晓玲,陈桂丹,王浏浏. “双碳”背景下木材加工产业的发展重点与方向的研讨. 浙江林业科技. 2024(04): 112-116 .
    3. 韦溶军,王志闯,王雪纯,王婷欢,王振宇,何正斌,伊松林. 锡铋合金/肉豆蔻酸制备具有金属外壳的储能木材. 北京林业大学学报. 2024(08): 25-33 . 本站查看
    4. 庞群艳,胡纲正,李文轩,贺磊,邱竑韫,黄慧,何文. 纳米铜热处理竹材制备及其防霉性能. 林业工程学报. 2024(06): 37-43 .
    5. 鲍伟,王胜捷,蒲万兴,宋子豪. 复合相变材料导热性能与套管式相变储热单元翅片结构优化. 农业工程学报. 2024(23): 303-312 .
    6. 何林韩,刘晓玲,陈松武,罗玉芬,王浏浏. 木质基复合相变材料的研究现状与发展趋势. 化工新型材料. 2023(S2): 525-531 .

    Other cited types(1)

Catalog

    Article views (736) PDF downloads (63) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return