• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Sun Yufeng, Tan Jiajin, Yuan Yuchao, Zhao Xiaojia, Ye Jianren. Prokaryotic expression of nematicidal proteases ATP-α and ClpX from Bacillus cereus NJSZ-13[J]. Journal of Beijing Forestry University, 2024, 46(4): 84-90. DOI: 10.12171/j.1000-1522.20220231
Citation: Sun Yufeng, Tan Jiajin, Yuan Yuchao, Zhao Xiaojia, Ye Jianren. Prokaryotic expression of nematicidal proteases ATP-α and ClpX from Bacillus cereus NJSZ-13[J]. Journal of Beijing Forestry University, 2024, 46(4): 84-90. DOI: 10.12171/j.1000-1522.20220231

Prokaryotic expression of nematicidal proteases ATP-α and ClpX from Bacillus cereus NJSZ-13

More Information
  • Received Date: June 09, 2022
  • Revised Date: June 26, 2023
  • Accepted Date: January 05, 2024
  • Available Online: January 09, 2024
  • Objective 

    In order to elucidate the molecular mechanism of nematicidal proteases ATP-α and ClpX in Bacillus cereus NJSZ-13, prokaryotic expression vectors of nematicidal proteases ATP-α and ClpX were constructed.

    Method 

    The nematicidase-encoding genes atpA and clpX were cloned, PCR-amplified the nematicidase-encoding gene by means of genetic engineering and connected with the vector pET-21b to construct a recombinant vector. The recombinant plasmid was extracted and transferred into the protein expression vector E. coli BL21 (DE3). The transformation effect was verified by colony PCR and sequencing. IPTG was added to induce protein expression, and the recombinant protein was purified using a Ni-NTA column. The purification effect of ATP-α and ClpX was verified by SDS-PAGE and Western blot, and the nematicidal activity was determined.

    Result 

    Colony PCR verification and sequencing showed that the recombinant vector contained protease-encoding genes atpA and clpX, and the gene sequence was consistent with the reference sequence, proving that the target genes had been successfully inserted into the BL21 (DE3) expression vector. SDS-PAGE and Western blot showed that the recombinant protein was correctly induced and purified, and the prokaryotic expression vectors of nematicide protease ATP-α and ClpX were successfully constructed. The results of nematicidal activity assay showed that both ATP-α and ClpX had strong nematicidal effects. ATP-α reached a nematicidal rate of 66.75% at 72 h, and ClpX reached a nematicidal rate of 75.46% at 72 h. At the same time, the ability of the two proteases working together to kill the nematodes was greatly enhanced, showing that the nematicidal rate of 66.32% in 24 h and 91.01% in 72 h.

    Conclusion 

    ATP-α and ClpX have higher nematicidal activity after prokaryotic expression and purification, and the two together have stronger nematicidal effect on B. xylophilus. It is proved that protease ATP-α and ClpX are important killing factors, which provides new clues and basis for the design and screening of killing drugs.

  • [1]
    张旭, 赵京京, 闫峻, 等. 2017年中国大陆松材线虫病灾害经济损失评估[J]. 北京林业大学学报, 2020, 42(10): 96−106.

    Zhang X, Zhao J J, Yan J, et al. Economic loss assessment of pine wilt disease in mainland China in 2017[J]. Journal of Beijing Forestry University, 2020, 42(10): 96−106.
    [2]
    叶建仁, 吴小芹. 松材线虫病研究进展[J]. 中国森林病虫, 2022, 41(3): 1−10.

    Ye J R, Wu X Q. Research progress of pine wilt disease[J]. Forest Pest and Disease, 2022, 41(3): 1−10.
    [3]
    Duncan L W. Current options for nematode management[J]. Annual Review of Phytopathology, 1991, 29(1): 469−490. doi: 10.1146/annurev.py.29.090191.002345
    [4]
    张弘弢, 赵宇, 李晓岩, 等. 生防细菌杀松材线虫的作用机制及应用[J]. 中国森林病虫, 2021, 40(4): 26−33.

    Zhang H T, Zhao Y, Li X Y, et al. Mechanism and application of biocontrol bacteria against pine wood nematode[J]. Forest Pest and Disease, 2021, 40(4): 26−33.
    [5]
    金娜, 刘倩, 简恒. 植物寄生线虫生物防治研究新进展[J]. 中国生物防治学报, 2015, 31(5): 789−800.

    Jin N, Liu Q, Jian H. Advances on biological control of plant-parasitic nematodes[J]. Chinese Journal of Biological Control, 2015, 31(5): 789−800.
    [6]
    黄冰纷, 陈俊梅, 李文鹏, 等. 松材线虫生防放线菌的筛选、鉴定及其毒性因子初步研究[J]. 北京林业大学学报, 2019, 41(4): 99−106.

    Huang B F, Chen J M, Li W P, et al. Screening and identification of actinomycetes for biological control of Bursaphelenchus xylophilus and preliminary study on their toxicity factors[J]. Journal of Beijing Forestry University, 2019, 41(4): 99−106.
    [7]
    Huang X W, Tian B Y, Niu Q H, et al. An extracellular protease from Brevibacillus laterosporus G4 without parasporal crystals can serve as a pathogenic factor in infection of nematodes[J]. Research in Microbiology, 2005, 156(5−6): 719−727. doi: 10.1016/j.resmic.2005.02.006
    [8]
    Huang X W, Zhao N H, Zhang K Q. Extracellular enzymes serving as virulence factors in nematophagous fungi involved in infection of the host[J]. Research in Microbiology, 2004, 155(10): 811−816. doi: 10.1016/j.resmic.2004.07.003
    [9]
    Niu Q H, Huang X W, Zhang L Q, et al. Functional identification of the gene bace16 from nematophagous bacterium Bacillus nematocida[J]. Applied Microbiology and Biotechnology, 2007, 75(1): 141−148. doi: 10.1007/s00253-006-0794-7
    [10]
    Niu Q H, Huang X W, Tian B Y, et al. Bacillus sp B16 kills nematodes with a serine protease identified as a pathogenic factor[J]. Applied Microbiology and Biotechnology, 2006, 69(6): 722−730. doi: 10.1007/s00253-005-0019-5
    [11]
    余子全, 周燚, 孙明, 等. 苏云金芽胞杆菌防治植物寄生线虫的研究进展[J]. 植物保护学报, 2004, 31(4): 418−424. doi: 10.3321/j.issn:0577-7518.2004.04.015

    Yu Z Q, Zhou Y, Sun M, et al. Progress of researches on activity of Bacillus thuringiensis against plant-parasitic nematodes[J]. Journal of Plant Protection, 2004, 31(4): 418−424. doi: 10.3321/j.issn:0577-7518.2004.04.015
    [12]
    李亮亮, 谈家金, 陈凤毛. 两株松材线虫拮抗细菌的筛选和鉴定[J]. 南京林业大学学报(自然科学版), 2017, 41(4): 37−41.

    Li L L, Tan J J, Chen F M . The screening and identification of two bacterial strains with nematicidal activityagainst Bursaphelenchus xylophilus[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2017, 41(4): 37−41.
    [13]
    牛秋红, 黄晓玮, 徐进, 等. 细菌在线虫生防中应用的研究进展[J]. 生物技术, 2006(1): 90−94. doi: 10.3969/j.issn.1004-311X.2006.01.037

    Niu Q H, Huang X W, Xu J, et al. Study on applications of bacteria in the biocontrol of nematodes[J]. Biotechnology, 2006(1): 90−94. doi: 10.3969/j.issn.1004-311X.2006.01.037
    [14]
    Cox G N, Kusch M, Edgar R S. Cuticle of Caenorhabditis elegans: its isolation and partial characterization[J]. The Journal of Cell Biology, 1981, 90(1): 7−17. doi: 10.1083/jcb.90.1.7
    [15]
    Maizels R M, Blaxter M L, Selkirk M E. Forms and functions of nematode surfaces[J]. Experimental Parasitology, 1993, 77(3): 380−384. doi: 10.1006/expr.1993.1096
    [16]
    江宇航, 李宏伟, 蔡赛波, 等. 马尾松毛虫肠道细菌的分离鉴定与产蛋白酶细菌的筛选[J]. 浙江农业学报, 2020, 32(8): 1446−1456. doi: 10.3969/j.issn.1004-1524.2020.08.15

    Jiang Y H, Li H W, Cai S B, et al. Isolation and identification of intestinal culturable bacteria of Dendrolimus punctatus and screening of protease-producing bacteria[J]. Acta Agriculturae Zhejiangensis, 2020, 32(8): 1446−1456. doi: 10.3969/j.issn.1004-1524.2020.08.15
    [17]
    牛秋红, 董冰雪, 黄思良, 等. 松材线虫生防细菌的筛选、鉴定及其毒性因子的初步研究[J]. 中国生物工程杂志, 2010, 30(8): 76−81.

    Niu Q H, Dong B X, Huang S L, et al. Screening identification and virulence factor determination of the bacteria with nematicidal activity to Bursaphelenchus xylophilus[J]. China Biotechnology, 2010, 30(8): 76−81.
    [18]
    Ribeiro-Guimarães M L, Pessolani M C V. Comparative genomics of mycobacterial proteases[J]. Microbial Pathogenesis, 2007, 43(5): 173−178.
    [19]
    Weber J, Senior A E. ATP synthesis driven by proton transport in F1F0-ATP synthase[J]. Febs Letters, 2003, 545(1): 61−70. doi: 10.1016/S0014-5793(03)00394-6
    [20]
    姚雪, 马洌扬, 张博, 等. 棉铃虫ATP合酶亚基α对Cry2Ab毒理的影响[J]. 植物保护学报, 2021, 48(5): 1034−1042.

    Yao X, Ma L Y, Zhao B, et al. The effects of ATP synthase subunit α on the toxicity of Cry2Ab to cotton bollworm Helicoverpa armigera[J]. Journal of Plant Protection, 2021, 48(5): 1034−1042.
    [21]
    Souza A R V, de Pina S E C M, Costa N S, et al. Description of optochin-resistant Streptococcus pneumoniae due to an uncommon mutation in the atpA gene and comparison with previously identified atpC mutants from Brazil[J]. Scientific Reports, 2021, 11(1): 7936−7946. doi: 10.1038/s41598-021-87071-8
    [22]
    邢林林, 卢凤英, 愈慧, 等. 鸭疫里默氏杆菌ATP合成酶F1亚单位α亚基的部分生物学特性研究[J]. 中国预防兽医学报, 2015, 37(4): 266−269. doi: 10.3969/j.issn.1008-0589.2015.04.07

    Xing L L, Lu F Y, Yu H, et al. Study on some biological characters of ATP synthase F1 subcomplex alpha subunit of Riemerella anatipestifer[J]. Chinese Journal of Preventive Veterinary Medicine, 2015, 37(4): 266−269. doi: 10.3969/j.issn.1008-0589.2015.04.07
    [23]
    白嘉诚, 迟明哲, 胡亚文, 等. 耻垢分枝杆菌ClpC和ClpX敲低表达菌株的构建及表型分析[J]. 中国生物工程杂志, 2021, 41(6): 13−22.

    Bai J C, Chi M Z, Hu Y W, et al. Construction and biological characteristics of ClpC and ClpX knock-down strains in Mycobacterium smegmatis[J]. China Biotechnology, 2021, 41(6): 13−22.
    [24]
    Rath P, Singh P K, Batra J K. Functional and structural characterization of Helicobacter pylori ClpX: a molecular chaperone of Hsp100 family[J]. Protein and Peptide Letters, 2012, 19(12): 1263−1271. doi: 10.2174/092986612803521701
    [25]
    王大林, 宋健, 丛春林, 等. Clp蛋白酶复合体亚基ClpX在肝细胞癌中的表达及意义[J]. 中国癌症防治杂志, 2020, 12(3): 291−296. doi: 10.3969/j.issn.1674-5671.2020.03.10

    Wang D L, Song J, Cong C L, et al. Expression and significance of Clp protease complex subunit ClpX in hepatocellular carcinoma[J]. Chinese Journal of Oncology Prevention and Treatment, 2020, 12(3): 291−296. doi: 10.3969/j.issn.1674-5671.2020.03.10
    [26]
    王琳, 谢建平. 细菌ClpX蛋白酶的结构和功能[J]. 微生物学报, 2010, 50(10): 1281−1287.

    Wang L, Xie J P. Bacterial ClpX protease structure and function: a review[J]. Acta Microbiologica Sinica, 2010, 50(10): 1281−1287.
    [27]
    Fetzer C, Korotkov V S, Thänert R, et al. A chemical disruptor of the clpx chaperone complex attenuates the virulence of multidrug-resistant Staphylococcus aureus[J]. Angewandte Chemie International Edition, 2017, 56(49): 1−7.
    [28]
    Gurung V, Biswas I. ClpX/P-dependent degradation of novel substrates in streptococcus mutans[J]. Journal of Bacteriology, 2022, 48(5): 1034−1042.
    [29]
    熊曦. 蜡样芽孢杆菌蛋白质量控制系统ClpX/Hsp100家族组分的生理功能分析[D]. 开封: 河南大学, 2017.

    Xiong X. The role of ClpX/Hsp100 protein family components in Bacillus cereus[D]. Kaifeng: Henan University, 2017.
    [30]
    Frees D, Qazi S N, Hill P J, et al. Hanne (I): alternative roles of ClpX and ClpP in Staphylococcus aureus stress tolerance and virulence[J]. Molecular Microbiology, 2003, 48(6): 1565−1578. doi: 10.1046/j.1365-2958.2003.03524.x
  • Related Articles

    [1]Wang Xuerui, Yue Qingmin, Hao Minhui, He Huaijiang, Zhang Chunyu, Zhao Xiuhai. Modeling and parameter optimization of net primary productivity in the Korean pine-broadleaved forests of northeast China[J]. Journal of Beijing Forestry University. DOI: 10.12171/j.1000-1522.20250026
    [2]Xu Jianwei, Luo Haifeng, Kan Jiangming, Li Wenbin, Tong Siyuan. Underground self-sealing pressure injection equipment for forest and fruit trees[J]. Journal of Beijing Forestry University, 2023, 45(6): 137-144. DOI: 10.12171/j.1000-1522.20220514
    [3]Ye Qi, Guan Cheng, Zhang Houjiang, Gong Yingchun, Sui Yongfeng, Liu Lige. Optimization of finger joint parameters and nondestructive testing of bending properties of radiata pine laminates[J]. Journal of Beijing Forestry University, 2022, 44(3): 148-160. DOI: 10.12171/j.1000-1522.20210351
    [4]Li Yun, Zhang Wangfei, Cui Junbo, Li Chunmei, Ji Yongjie. Inversion exploration on forest aboveground biomass of optical and SAR data supported by parameter optimization method[J]. Journal of Beijing Forestry University, 2020, 42(10): 11-19. DOI: 10.12171/j.1000-1522.20190389
    [5]LI Ning, CHEN Li-hua, YANG Yuan-jun.. Factors influencing root tensile properties of Pinus tabuliformis and Larix principis-rupprechtii.[J]. Journal of Beijing Forestry University, 2015, 37(12): 77-84. DOI: 10.13332/j.1000-1522.20150131
    [6]XU Mei-jun, LI Li, LUO Bin. Factors affecting sanding force and optimal sanding parameters of Populus.[J]. Journal of Beijing Forestry University, 2015, 37(1): 122-133. DOI: 10.13332/j.cnki.jbfu.2015.01.002
    [7]CAO Lin, DAI Jin-song, XU Jian-xin, XU Zi-qian, SHE Guang-hui. Optimized extraction of forest parameters in subtropical forests based on airborne small footprint LiDAR technology[J]. Journal of Beijing Forestry University, 2014, 36(5): 13-21. DOI: 10.13332/j.cnki.jbfu.2014.05.009
    [8]ZHANG Shuang-yan, FEI Ben-hua, YU Yan, CHENG Hai-tao, WANG Chuan-gui. Influence of lignin content on tensile properties of single wood fiber.[J]. Journal of Beijing Forestry University, 2012, 34(1): 131-134.
    [9]WANG Ping-hua, CHEN Li-hua, JI Xiao-dong, SONG Heng-chuan, GAI Xiao-gang, JIANG Kun-yun, Lv Chun-juan. Establishing an integrated mechanical model of root tensile strength—taking four common arbor species in North China for example[J]. Journal of Beijing Forestry University, 2012, 34(1): 39-45.
    [10]LUO Bin, YIN Ya-fang, JIANG Xiao-mei, LUO Xiu-qin, LIU Bo, GUO Qi-rong. Evaluating bending and compressive strength properties of Eucalyptus grandia×E. urophylla plantation wood with three nondestructive methods[J]. Journal of Beijing Forestry University, 2008, 30(6): 137-140.
  • Cited by

    Periodical cited type(3)

    1. 赵尧,付伟莲,关惠元. T型圆竹家具构件力学性能研究. 林产工业. 2024(10): 42-46 .
    2. 刘燕,唐斌,万川,何叶,胡文刚. 实木家具斜角接合结构的可拆装设计与评估. 林产工业. 2023(04): 38-42+50 .
    3. 陈炳睿,胡文刚. 一种可拆装式椭圆榫节点的设计与性能分析. 木材科学与技术. 2022(02): 65-70+86 .

    Other cited types(0)

Catalog

    Article views (466) PDF downloads (60) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return