• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Li Yun, Zhang Wangfei, Cui Junbo, Li Chunmei, Ji Yongjie. Inversion exploration on forest aboveground biomass of optical and SAR data supported by parameter optimization method[J]. Journal of Beijing Forestry University, 2020, 42(10): 11-19. DOI: 10.12171/j.1000-1522.20190389
Citation: Li Yun, Zhang Wangfei, Cui Junbo, Li Chunmei, Ji Yongjie. Inversion exploration on forest aboveground biomass of optical and SAR data supported by parameter optimization method[J]. Journal of Beijing Forestry University, 2020, 42(10): 11-19. DOI: 10.12171/j.1000-1522.20190389

Inversion exploration on forest aboveground biomass of optical and SAR data supported by parameter optimization method

More Information
  • Received Date: October 10, 2019
  • Revised Date: December 07, 2019
  • Available Online: October 08, 2020
  • Published Date: October 24, 2020
  •   Objective  Forest is the largest storage of organic carbon in the whole terrestrial carbon cycle system. Accurate estimation of forest aboveground biomass (AGB) is essential for global carbon storage analysis and estimation. This paper aims to explore the potential of optical and synthetic aperture radar (SAR) data for forest AGB inversion. In this study, Landsat8 OLI, GF-1 data were selected as optical data and advanced land observing satellite (ALOS)-1 phased array type L-band synthetic aperture radar (PALSAR)-1 data was selected as SAR data.
      Method  Firstly, band ratio parameters, vegetation index parameters, and texture information were extracted from Landsat8OLI, gaofen-1 optical data and ALOS-1 PALSAR-1 SAR data, respectively. While polarization decomposition information was also extracted from ALOS-1 PALSAR-1 SAR data. Then these parameters extracted from different remote sensing data were sorted according to their importance by random forest (RF) algorithm. Finally, fast iterative feature selection method for k-nearest neighbor (KNN-FIFS) algorithm was used to analyze different feature combinations, and four models were constructed to estimate forest AGB and a cross-validation method was applied for result validation.
      Result  These remote sensing data were modeled to estimate forest AGB using four characteristic parameters: vegetation factor, band ratio, texture factor and polarization decomposition information. For parameters extracted from vegetation factor, band ratio, texture factor, Landsat8 OLI data performed best than GF-1 and PALSAR-1 data with R2 = 0.50, RMSE = 33.34 t/ha. For GF-1 data, R2 was 0.36, RMSE was 37.60 t/ha, R2 was 0.45, RMSE was 35.40 t/ha for PALSAR-1 data. However, for parameters extracted from polarization decomposition, PALSAR-1data showed better performance with R2 = 0.63 and RMSE = 28.84 t/ha.
      Conclusion  When the parameter extraction methods are the same, the forest AGB inversion potentials of the optical and SAR data are similar. However, when the parameter extraction method is different, for example, using polarization decomposition to extract parameters, the SAR data show better performance for forest AGB inversion.
  • [1]
    陶玉华. 森林生态系统碳储量研究的意义及国内外研究进展[J]. 现代农业科技, 2012(9):205, 212.

    Tao Y H. Research significance of carbon storage of forest ecosystem and research progress at home and abroad[J]. Modern Agricultural Sciences and Technology, 2012(9): 205, 212.
    [2]
    杨洪晓, 吴波, 张金屯, 等. 森林生态系统的固碳功能和碳储量研究进展[J]. 北京师范大学学报(自然科学版), 2005, 41(2):172−177. doi: 10.3321/j.issn:0476-0301.2005.02.018.

    Yang H X, Wu B, Zhang J T, et al. Progress of research into carbon fixation and storage of forest ecosystems[J]. Journal of Beijing Normal University (Natural Science), 2005, 41(2): 172−177. doi: 10.3321/j.issn:0476-0301.2005.02.018.
    [3]
    Lu D S, Chen Q, Wang G X, et al. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems[J]. International Journal of Digital Earth, 2014, 9(1): 63−105.
    [4]
    韩宗涛, 江洪, 王威, 等. 基于多源遥感的森林地上生物量KNN-FIFS估测[J]. 林业科学, 2018, 54(9):70−79. doi: 10.11707/j.1001-7488.20180909.

    Han Z T, Jiang H, Wang W, et al. Forest above-ground biomass estimation using KNN-FIFS method based on multi-source remote sensing data[J]. Scientia Silvae Sinicae, 2018, 54(9): 70−79. doi: 10.11707/j.1001-7488.20180909.
    [5]
    李春梅. 基于多源数据的森林地上生物量估测方法研究[D]. 昆明: 西南林业大学, 2016.

    Li C M. A study of the retrieval methods of forest above ground biomass based on multi-source data[D]. Kunming: Southwest Forestry University, 2016.
    [6]
    李春梅, 张王菲, 李增元, 等. 基于多源数据的根河实验区生物量反演研究[J]. 北京林业大学学报, 2016, 38(3):64−72.

    Li C M, Zhang W F, Li Z Y, et al. Retrieval of forest above-ground biomass using multi-source data in Genhe, Inner Mongolia[J]. Journal of Beijing Forestry University, 2016, 38(3): 64−72.
    [7]
    庞勇, 李增元, 谭炳香, 等. 点云密度对机载激光雷达林分高度反演的影响[J]. 林业科学研究, 2008, 21(增刊): 14−19.

    Pang Y, Li Z Y, Tan B X, et al. The effects of airborne LiDAR point density on forest height estimation[J]. Forest Research, 2008, 21(Suppl.): 14−19.
    [8]
    刘清旺, 李增元, 陈尔学, 等. 机载LIDAR点云数据估测单株木生物量[J]. 高技术通讯, 2010, 20(7):765−770. doi: 10.3772/j.issn.1002-0470.2010.07.019

    Liu Q W, Li Z Y, Chen E X, et al. Estimating biomass of individual trees using point cloud data of airborne[J]. Chinese High Technology Letters, 2010, 20(7): 765−770. doi: 10.3772/j.issn.1002-0470.2010.07.019
    [9]
    穆喜云, 张秋良, 刘清旺, 等. 基于激光雷达的大兴安岭典型森林生物量制图技术研究[J]. 遥感技术与应用, 2015, 30(2):220−225.

    Mu X Y, Zhang Q L, Liu Q W, et al. A study on typical forest biomass mapping technology of Great Khingan using airborne laser scanner data[J]. Remote Sensing Technology and Application, 2015, 30(2): 220−225.
    [10]
    陈尔学. 合成孔径雷达森林生物量估测研究进展[J]. 世界林业研究, 1999, 12(6):18−23. doi: 10.3969/j.issn.1001-4241.1999.06.004

    Chen E X. Development of forest biomass estimation using SAR data[J]. World Forestry Research, 1999, 12(6): 18−23. doi: 10.3969/j.issn.1001-4241.1999.06.004
    [11]
    张王菲, 陈尔学, 李增元, 等. 干涉、极化干涉SAR技术森林高度估测算法研究进展[J]. 遥感技术与应用, 2017, 32(6):983−997.

    Zhang W F, Chen E X, Li Z Y, et al. Development of forest height estimation using InSAR/PolInSAR technology[J]. Remote Sensing Technology and Application, 2017, 32(6): 983−997.
    [12]
    Pu L, Zhang X L, Shi J, et al. Adaptive filtering for 3D SAR data based on dynamic gaussian threshold[C]// Proceedings of the 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR). Xiamen: IEEE, 2019.
    [13]
    张王菲. 星载SAR遥感反演中地形辐射校正的关键技术研究[D]. 昆明: 昆明理工大学, 2011.

    Zhang W F. Study on the key techniques of terrain radiometric correction in spaceborne SAR remote sensing inversion[D]. Kunming: Kunming University of Science and Technology, 2011.
    [14]
    杨浩. 基于时间序列全极化与简缩极化SAR的作物定量监测研究[D]. 北京: 中国林业科学研究院, 2015.

    Yang H. Study on quantitative crop monitoring by time series of fully polarimetric and compact polarimetric Sar imagery[D]. Beijing: Chinese Academy of Forestry, 2015.
    [15]
    陈传国. 东北主要林木生物量手册[M]. 北京: 中国林业出版社, 1989.

    Chen C G. Manual of main forest biomass in Northeast China[M]. Beijing: China Forestry Publishing House, 1989.
    [16]
    Haralick R M. Statistical and structural approaches to texture[J]. Proceedings of the IEEE, 1979, 67(5): 786−804. doi: 10.1109/PROC.1979.11328
    [17]
    Tuominen S, Pekkarinen A. Performance of different spectral and textural aerial photograph features in multi-source forest inventory[J]. Remote Sensing of Environment, 2005, 94(2): 256−268. doi: 10.1016/j.rse.2004.10.001
    [18]
    Chica-Olmo M, Abarca-Hernández F. Computing geostatistical image texture for remotely sensed data classification[J]. Computers & Geosciences, 2000, 26(4): 373−383.
    [19]
    张腊梅, 段宝龙, 邹斌. 极化SAR图像目标分解方法的研究进展[J]. 电子与信息学报, 2016, 38(12):3289−3297.

    Zhang L M, Duan B L, Zou B. Research development on target decomposition method of polarimetric SAR image[J]. Journal of Electronics and Information Technology, 2016, 38(12): 3289−3297.
    [20]
    Breiman L. Random forests[D]. Berkeley: University of California, 2001: 5−26
    [21]
    李欣海. 随机森林模型在分类与回归分析中的应用[J]. 应用昆虫学报, 2013, 54(4):1190−1197. doi: 10.7679/j.issn.2095-1353.2013.163

    Li X H. Using “random forest” for classification and regression[J]. Chinese Journal of Applied Entomology, 2013, 54(4): 1190−1197. doi: 10.7679/j.issn.2095-1353.2013.163
    [22]
    苏瑞雪, 汤玉奇. 光学-极化SAR影像特征融合与分类[J]. 测绘与空间地理信息, 2019(6):51−55. doi: 10.3969/j.issn.1672-5867.2019.06.014

    Su R X, Tang Y Q. Feature fusion and classification of optical-PolSAR images[J]. Geomatics & Spatial Information Technology, 2019(6): 51−55. doi: 10.3969/j.issn.1672-5867.2019.06.014
    [23]
    范亚雄. 星载X-波段干涉SAR森林高度估测方法研究[D]. 北京: 中国林业科学研究院, 2019.

    Fan Y X. Study on forest height estimation method of spaceborne X- band interferometric SAR[D]. Beijing: Chinese Academy of Forestry, 2019.
  • Related Articles

    [1]Zou Xuge, Wang Yin, Wang Jianming, Qu Mengjun, Zhu Weilin, Zhao Hang, Si Jianhua, Li Jingwen. Coordination and trade-off of leaf functional traits in Populus euphratica and their response to tree age and soil factors[J]. Journal of Beijing Forestry University, 2024, 46(5): 82-92. DOI: 10.12171/j.1000-1522.20220522
    [2]Zhang Yue, Tian Qing, Huang Rong. Responses of typical plant functional traits among summer-flowering tree species in heterogeneous city habitats in Lanzhou City of northwestern China[J]. Journal of Beijing Forestry University, 2023, 45(10): 90-99. DOI: 10.12171/j.1000-1522.20210476
    [3]Zhang Rishi, Huang Zhenge, He Bin, Xie Minyang, Zhou Gang, Wei Mingbao. Biomass accumulation and productivity changes of Taiwania flousiana plantation at different age stages in northwestern Guangxi, southern China[J]. Journal of Beijing Forestry University, 2021, 43(11): 20-27. DOI: 10.12171/j.1000-1522.20200107
    [4]Ren Hao, Gao Guoqiang, Ma Yaoyuan, Li Zuwang, Gu Jiacun. Root nitrogen uptake and its relationship with root morphological and chemical traits in Pinus koraiensis at different ages[J]. Journal of Beijing Forestry University, 2021, 43(10): 65-72. DOI: 10.12171/j.1000-1522.20200385
    [5]YAN Bo-qian, LIN Wan-zhong, LIU Qi-jing, YU Jian. Age-dependent radial growth responses of Larix chinensis to climatic factors in Qinling Mountains, northwestern China[J]. Journal of Beijing Forestry University, 2017, 39(9): 58-65. DOI: 10.13332/j.1000-1522.20170161
    [6]YANG Li-xue, WANG Hai-nan, FAN Jing. Effects of donor tree ages and plant growth regulators on the softwood cutting propagation of Hippophae rhamnoides[J]. Journal of Beijing Forestry University, 2011, 33(6): 107-111.
    [7]HU Yun-yun, KANG Xin-gang, GAO Yan, FENG Qi-xiang, YAO Jing-chun3, WANG Zhuo-hui. Variation of tree age for natural spruce-fir-broadleaved forests and estimation precision.[J]. Journal of Beijing Forestry University, 2011, 33(4): 22-27.
    [8]XING Mei-jun, YANG Gang, HUANG Xin-yuan, WANG Zhong-zhi. Defining physiological age of plant organs[J]. Journal of Beijing Forestry University, 2010, 32(4): 181-185.
    [9]HOU Zheng-yang, , XU Qing, FENG Zhong-ke. New framework of forest management in the new age.[J]. Journal of Beijing Forestry University, 2008, 30(增刊1): 300-305.
    [10]ZHOU Dan-hui, HE Hong-shi, LI Xiu-zhen, ZHOU Chun-hua, WANG Xu-gao, CHEN Hong-wei. Potential responses of different stand age classes to climate changes in the Xiaoxinganling Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2007, 29(4): 110-117. DOI: 10.13332/j.1000-1522.2007.04.024
  • Cited by

    Periodical cited type(27)

    1. 佟富春,吴智华,林瑞雪,吴晓君,邓惠方,黄子峻,李仁杰,栾军伟. 毛竹扩张对南亚热带常绿阔叶林土壤跳虫群落特征的影响. 中南林业调查规划. 2024(01): 51-57+70 .
    2. 应益山,凡莉莉,陈双林,郭子武,胡瑞财. 苦竹扩张茶园过程中茶树叶片性状及其异速生长关系变化特征. 竹子学报. 2024(02): 50-57 .
    3. 汪忠华,陈双林,胡瑞财,郭子武,江秀琴,凡莉莉. 苦竹向茶园扩张后不同年龄立竹叶片的功能性状变化特征研究. 西南林业大学学报(自然科学). 2024(05): 25-34 .
    4. 陈禹锦,于芬,国春策,杨光耀,张文根. 基于MaxEnt生态位模型的毛竹全球潜在适生区预测与分析. 世界竹藤通讯. 2024(05): 47-58 .
    5. 董亚文,谢燕燕,陈双林,郭子武,张景润,汪舍平. 林下植被演替过程中毛竹枝叶形态质量和抽枝展叶效率变化特征. 植物科学学报. 2023(04): 437-446 .
    6. 周德中,周小枫,王绍剑,刘骏,王涓,李怡. 基于文献计量学的毛竹扩张研究现状可视化分析. 生物灾害科学. 2023(04): 519-528 .
    7. 蔡世锋. 木荷与杉木混交对林木生长及叶功能性状的影响. 福建林业科技. 2023(04): 55-61 .
    8. 佟富春,吴智华,林瑞雪,吴晓君,邓惠方,袁千允,栾军伟,肖以华. 毛竹扩张对土壤甲螨群落结构的影响. 东北林业大学学报. 2022(02): 59-64 .
    9. 阮宇,胡景涛,肖国生,李俊清,任凭. 中山杉功能性状适应三峡库区消落带研究. 生态学报. 2022(07): 2921-2930 .
    10. 夏恩龙,农珺清,魏松坡,刘希珍,刘广路. 毛竹向阔叶林扩展过程中土壤养分变化特征. 生态环境学报. 2022(06): 1110-1117 .
    11. 程明圣,邹娜. 毛竹扩张对森林生态的影响及其管控研究进展. 江汉大学学报(自然科学版). 2021(03): 49-55 .
    12. 陈禹锦,罗喻才,于芬,杨光耀,张文根. 气候变化情景下毛竹潜在分布及动态预测. 世界竹藤通讯. 2021(03): 5-14 .
    13. 何玉友,陈双林,郭子武,张玮,汪舍平. 不同弃管年限毛竹林立竹叶片功能性状的变化特征. 福建农林大学学报(自然科学版). 2021(05): 641-648 .
    14. 黄彪,刘广路,范少辉,刘希珍,冯云,农珺清,申景昕. 毛竹向阔叶林扩展过程细根可塑性变化. 中南林业科技大学学报. 2021(10): 11-19 .
    15. 王敬哲,陈志强,陈志彪,潘宗涛. 南方红壤侵蚀区不同植被恢复年限下芒萁叶功能性状对土壤因子的响应. 生态学报. 2020(03): 900-909 .
    16. 郭雯,张建,漆良华,商泽安,王锐,杨畅. 毛竹及其变种叶功能性状与影响因素. 森林与环境学报. 2020(03): 260-268 .
    17. 张秀芳,穆振北,林美娇,江淼华,巩嘉欣,游巍斌. 琅岐岛4种优势植物叶功能性状及其影响因子. 应用与环境生物学报. 2020(03): 667-673 .
    18. 池鑫晨,宋超,朱向涛,王楠,王晓雨,白尚斌. 毛竹入侵常绿阔叶林对土壤活性有机碳氮的动态影响. 生态学杂志. 2020(07): 2263-2272 .
    19. 钟雅琪,钟全林,李宝银,余华,徐朝斌,程栋梁,乐新贵,郑文婷. 毛竹扩张对亚热带常绿阔叶林主要树种叶结构型性状的影响. 生态学报. 2020(14): 5018-5028 .
    20. 张秀梅,许建新,何新杰,张朝铖,沈彦会,张竞元. 高温胁迫对洋竹草生长及部分生理指标的影响. 江西农业学报. 2019(06): 40-44 .
    21. 童冉,周本智,姜丽娜,曹永慧,葛晓改,杨振亚. 毛竹入侵对森林植物和土壤的影响研究进展. 生态学报. 2019(11): 3808-3815 .
    22. 范少辉,申景昕,刘广路,冯云,刘希珍,蔡春菊. 毛竹向杉木林扩展对土壤养分含量及计量比的影响. 西北植物学报. 2019(08): 1455-1462 .
    23. 喻阳华,钟欣平,程雯. 黔西北地区优势树种叶片功能性状与经济谱分析. 森林与环境学报. 2018(02): 196-201 .
    24. 郭雯,徐瑞晶,漆良华,胡璇,丁霞,程昌锦,张建,雷刚. 竹类植物光合特性与叶片功能性状研究. 世界林业研究. 2018(04): 29-35 .
    25. 刘广路,范少辉,唐晓鹿,刘希珍. 毛竹向杉木林扩展过程中叶功能性状的适应策略. 林业科学. 2017(08): 17-25 .
    26. 刘广路,范少辉,蔡春菊,刘希珍. 毛竹向撂荒地扩展过程中叶功能性状变化. 南京林业大学学报(自然科学版). 2017(02): 41-46 .
    27. 刘广路,刘希珍,李雁冰,罗天磊,蔡春菊,范少辉. 毛竹向撂荒地扩展过程中细根性状变化特征. 热带作物学报. 2017(07): 1204-1209 .

    Other cited types(14)

Catalog

    Article views (1413) PDF downloads (102) Cited by(41)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return