Citation: | Zhang Xiao, Qin Lihou, Liu Qijing. Relationship between photosynthetic characteristics and litter decomposition rate of main tree species in Changbai Mountain broadleaved Korean pine forest of northeastern China[J]. Journal of Beijing Forestry University, 2023, 45(11): 11-22. DOI: 10.12171/j.1000-1522.20220286 |
This paper aims to elucidate the differences between leaf litter decomposition of tree and shrub species in the broadleaved Korean pine forest in Changbai Mountain of northeastern China, explore the relationship of photosynthetic parameters and the decomposition rate of leaf litter, and provide a basis for revealing the universality of leaf economic spectrum.
Taking 19 tree and 11 shrub species as research objects, the litter bag method was used for the decomposition experiment. On April 26, June 26, August 26, and October 26, 2020, litter bags were carried out four times in turn. After recovery, the decomposition coefficient was calculated by fitting the Olson negative exponential decay model. At the same time, the light response curve of the in-situ living leaves was measured using the Li-6400 portable photosynthesis instrument, the photosynthetic parameters were fitted, the correlation was analyzed, and regression analysis was performed.
(1) Among the arbor species, the decomposition coefficient of Pinus koraiensis was the smallest (0.24), versus the largest for Phellodendron amurense (1.05). The decomposition coefficients of shrub species were larger (or faster) than that of tree species (P = 0.003). Corylus mandshurica had the smallest decomposition coefficient (0.52), and Euonymus verrucosus had the largest (1.63); (2) The photosynthetic parameters were expressed as the net photosynthetic rate at the light saturation point (Pn), stomatal conductance (Gs), leaf carboxylation rate (CE), light saturation point (LSP), and the maximum net photosynthetic rate (Pmax), light compensation point (LCP), transpiration rate (Tr), stomatal limit value (Ls), dark respiration rate (Rd), the mean values of the 9 photosynthetic parameters of tree species were higher than those of shrub species (P < 0.05). There was no significant difference in CO2 concentration (Ci) and water use efficiency (WUE) between tree and shrub species (P > 0.05). (3) Decomposition coefficient (k) showed a significant negative correlation with all physiological properties of leaves, including Pn, LSP, Pmax, Gs, CE, LCP, but Rd had no significant correlation. There was multicollinearity between Pn and Pmax, and the stepwise regression showed that Pn had the strongest explanatory and indicative effect on k.
Light intensity affects the decomposition rate of leaf litter by affecting leaf morphology and nutrient content, resulting in tree species having higher photosynthetic parameters but lower decomposition coefficients than shrub species, i.e. slower decomposition rate. There is a connectivity relationship between light intensity, leaf morphology, nutrient content, and decomposition rate of leaf litter. Pn, Gs, CE, LSP, Pmax, LCP basically in line with pectral theory of leaf economics, Pn can explain and predict the decomposition rate of leaf litter.
[1] |
李荣华, 邓琦, 周国逸, 等. 起始时间对亚热带森林凋落物分解速率的影响[J]. 植物生态学报, 2011, 35(7): 699−706. doi: 10.3724/SP.J.1258.2011.00699
Li R H, Deng Q, Zhou G Y, et al. Effect of incubation starting time on litter decomposition rate in a subtropical forest in China[J]. Chinese Journal of Plant Ecology, 2011, 35(7): 699−706. doi: 10.3724/SP.J.1258.2011.00699
|
[2] |
吴承祯, 洪伟, 姜志林, 等. 我国森林凋落物研究进展[J]. 江西农业大学学报, 2000, 22(3): 405−410. doi: 10.3969/j.issn.1000-2286.2000.03.019
Wu C Z, Hong W, Jiang Z L, et al. Advances in research of forest litter-fall in China[J]. Acta Agriculturae Universitatis Jiangxiensis, 2000, 22(3): 405−410. doi: 10.3969/j.issn.1000-2286.2000.03.019
|
[3] |
卢俊培, 刘其汉. 海南岛尖峰岭热带林凋落叶分解过程的研究[J]. 林业科学研究, 1989, 2(1): 25−33. doi: 10.13275/j.cnki.lykxyj.1989.01.004
Lu J P, Liu Q H. Study on the decomposition process of tropical forest litter in Jianfengling, Hainan Island[J]. Forest Research, 1989, 2(1): 25−33. doi: 10.13275/j.cnki.lykxyj.1989.01.004
|
[4] |
刘晶, 谢婉余, 张巧明, 等. 黄土丘陵区不同植物凋落叶片的分解及养分释放特性[J]. 草业学报, 2018, 27(9): 25−33. doi: 10.11686/cyxb2017442
Liu J, Xie W Y, Zhang Q M, et al. Leaf decomposition and nutrient release characteristics of different plant species in the Loess Hilly region[J]. Acta Prataculturae Sinica, 2018, 27(9): 25−33. doi: 10.11686/cyxb2017442
|
[5] |
郭忠玲, 郑金萍, 马元丹, 等. 长白山各植被带主要树种凋落物分解速率及模型模拟的试验研究[J]. 生态学报, 2006, 26(4): 1037−1046. doi: 10.3321/j.issn:1000-0933.2006.04.009
Guo Z L, Zheng J P, Ma Y D, et al. Researches on litterfall decomposition rates and model simulating of main species in various forest vegetations of Changbai Mountains, China[J]. Acta Ecologica Sinica, 2006, 26(4): 1037−1046. doi: 10.3321/j.issn:1000-0933.2006.04.009
|
[6] |
葛晓改, 曾立雄, 肖文发, 等. 三峡库区森林凋落叶化学计量学性状变化及与分解速率的关系[J]. 生态学报, 2015, 35(3): 779−787.
Ge X G, Zeng L X, Xiao W F, et al. Dynamic of leaf litter stoichiometric traits dynamic and its relations with decomposition rates under three forest types in Three Gorges Reservoir Area[J]. Acta Ecologica Sinica, 2015, 35(3): 779−787.
|
[7] |
Cornwell W K, Cornelissen J H C, Amatangelo K, et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide[J]. Ecology Letters, 2008, 11(10): 1065−1071. doi: 10.1111/j.1461-0248.2008.01219.x
|
[8] |
Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428: 821−827. doi: 10.1038/nature02403
|
[9] |
Wright I J, Reich P B, Cornelissen J, et al. Assessing the generality of global leaf trait relationships[J]. New Phytologist, 2005, 166(2): 485−496. doi: 10.1111/j.1469-8137.2005.01349.x
|
[10] |
Reich P B, Walters M B, Ellsworth D S. From tropics to tundra: global convergence in plant functioning[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(25): 13730−13734.
|
[11] |
Poorter L, Bongers F. Leaf traits are good predictors of plant performance across 53 rain forest species[J]. Ecology, 2006, 87(7): 1733−1743. doi: 10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2
|
[12] |
Yuan Z, Chen H Y H. Global trends in senesced-leaf nitrogen and phosphorus[J]. Global Ecology and Biogeography, 2009, 18(6): 759. doi: 10.1111/j.1466-8238.2009.00495.x
|
[13] |
Freschet G T, Aerts R, Cornelissen J H C. A plant economics spectrum of litter decomposability[J]. Funcional Ecology, 2012, 26(1): 56−65. doi: 10.1111/j.1365-2435.2011.01913.x
|
[14] |
Roumet C, Birouste M, Picon-Cochard C, et al. Root structure-function relationships in 74 species: evidence of a root economics spectrum related to carbon economy[J]. New Phytologist, 2016, 210(3): 815−826. doi: 10.1111/nph.13828
|
[15] |
Santiago L S. Extending the leaf economics spectrum to decomposition: evidence from a tropical forest[J]. Ecology, 2007, 88(5): 1126−1131. doi: 10.1890/06-1841
|
[16] |
王德利, 王正文, 张喜军. 羊草两个趋异类型的光合生理生态特性比较的初步研究[J]. 生态学报, 1999, 19(6): 837−843.
Wang D L, Wang Z W, Zhang X J. The comparison of photosynthetic physiological characteristics between the two divergent Aneurolepidium chinense types[J]. Acta Ecologica Sinica, 1999, 19(6): 837−843.
|
[17] |
李德志, 臧润国. 森林冠层结构与功能及其时空变化研究进展[J]. 世界林业研究, 2004, 17(3): 12−16. doi: 10.3969/j.issn.1001-4241.2004.03.003
Li D Z, Zang R G. The research advances on the structure and function of forest canopy, as well as their temporal and spatial changes[J]. World Forestry Research, 2004, 17(3): 12−16. doi: 10.3969/j.issn.1001-4241.2004.03.003
|
[18] |
范玉龙, 刘慧敏, 胡楠, 等. 伏牛山自然保护区森林生态系统植物功能群光合特性[J]. 生态学报, 2016, 36(15): 4609−4616.
Fan Y L, Liu H M, Hu N, et al. Photosynthetic characteristics of plant functional groups in forest ecosystem at the national natural reserve of FuNiu Mountain[J]. Acta Ecologica Sinica, 2016, 36(15): 4609−4616.
|
[19] |
夏国威, 孙晓梅, 陈东升, 等. 日本落叶松冠层光合特性的空间变化[J]. 林业科学, 2019, 55(6): 13−21. doi: 10.11707/j.1001-7488.20190602
Xia G W, Sun X M, Chen D S, et al. Spatial variation of photosynthetic characteristics in canopy of Larix kaempferi[J]. Scientia Silvae Sinicae, 2019, 55(6): 13−21. doi: 10.11707/j.1001-7488.20190602
|
[20] |
张旺锋, 樊大勇, 谢宗强, 等. 濒危植物银杉幼树对生长光强的季节性光合响应[J]. 生物多样性, 2005, 13(5): 387−397. doi: 10.3321/j.issn:1005-0094.2005.05.003
Zhang W F, Fan D Y, Xie Z Q, et al. The season photosynthetic responses of seedings of the endangered plant Cathaya argyrophylla to different growth light environments[J]. Biodiversity Science, 2005, 13(5): 387−397. doi: 10.3321/j.issn:1005-0094.2005.05.003
|
[21] |
刘泽彬, 程瑞梅, 肖文发, 等. 遮荫对中华蚊母树苗期生长及光合特性的影响[J]. 林业科学, 2015, 51(2): 129−136. doi: 10.11707/j.1001-7488.20150216
Liu Z B, Cheng R M, Xiao W F, et al. Effects of shading on growth and photosynthetic characteristics of Distylium chinense seedlings[J]. Scientia Silvae Sinicae, 2015, 51(2): 129−136. doi: 10.11707/j.1001-7488.20150216
|
[22] |
陈吉玉, 冯铃洋, 高静, 等. 光照强度对苗期大豆叶片气孔特性及光合特性的影响[J]. 中国农业科学, 2019, 52(21): 3773−3781. doi: 10.3864/j.issn.0578-1752.2019.21.006
Chen J Y, Feng L Y, Gao J, et al. Influence of light intensity on stoma and photosynthetic characteristics of soybean leaves[J]. Scientia Agricultura Sinica, 2019, 52(21): 3773−3781. doi: 10.3864/j.issn.0578-1752.2019.21.006
|
[23] |
王峰, 陈玉真, 王秀萍, 等. 不同品种茶树叶片功能性状及光合特性的比较[J]. 茶叶科学, 2016, 36(3): 285−292. doi: 10.3969/j.issn.1000-369X.2016.03.009
Wang F, Chen Y Z, Wang X P, et al. Comparison of leaf functional and photosynthetic characteristics in different tea cultivars[J]. Journal of Tea Science, 2016, 36(3): 285−292. doi: 10.3969/j.issn.1000-369X.2016.03.009
|
[24] |
吕建林, 陈如凯, 张木清, 等. 甘蔗净光合速率、叶绿素和比叶重的季节变化及其关系[J]. 福建农业大学学报, 1998, 27(3): 30−35.
Lü J L, Chen R K, Zhang M Q, et al. Seasonal change of the net photosynthesis rate, chlorophyll content and specific weight of leaf of sugarcane and their relationships[J]. Journal of Fujian Agricultural University, 1998, 27(3): 30−35.
|
[25] |
何春霞, 李吉跃, 张燕香, 等. 5种绿化树种叶片比叶重、光合色素含量和δ13C的开度与方位差异[J]. 植物生态学报, 2010, 34(2): 134−143. doi: 10.3773/j.issn.1005-264x.2010.02.004
He C X, Li J Y, Zhang Y X, et al. Differences in leaf mass per area, photosynthetic pigments and δ13C by orientation and crown position in five greening tree species[J]. Chinese Journal of Plant Ecology, 2010, 34(2): 134−143. doi: 10.3773/j.issn.1005-264x.2010.02.004
|
[26] |
唐玉瑞, 赵成章, 赵辉, 等. 不同光环境下洮河护岸林沙棘叶干重与叶面积、叶厚度间的关系[J]. 生态学杂志, 2021, 40(9): 2745−2753.
Tang Y R, Zhao C Z, Zhao H, et al. The relationship between leaf dry mass and leaf area, leaf thickness of Hippophae rhamnoides under different light conditions in Taohe River riparian forest[J]. Chinese Journal of Ecology, 2021, 40(9): 2745−2753.
|
[27] |
冯玉龙, 曹坤芳, 冯志立, 等. 四种热带雨林树种幼苗比叶重, 光合特性和暗呼吸对生长光环境的适应[J]. 生态学报, 2002, 22(6): 901−910. doi: 10.3321/j.issn:1000-0933.2002.06.015
Feng Y L, Cao K F, Feng Z L, et al. Acclimation of lamina mass per unit area, photosynthetic characteristics and dark respiration to growth light regimes in four tropical rainforest species[J]. Acta Ecologica Sinica, 2002, 22(6): 901−910. doi: 10.3321/j.issn:1000-0933.2002.06.015
|
[28] |
李明财, 朱教君, 孙一荣. 东北次生林主要树种比叶面积对光照强度的响应[J]. 生态学杂志, 2009, 28(8): 1437−1442. doi: 10.13292/j.1000-4890.2009.0264
Li M C, Zhu J J, Sun Y R. Responses of specific leaf area of dominant tree species in Northeast China secondary forests to light intensity[J]. Chinese Journal of Ecology, 2009, 28(8): 1437−1442. doi: 10.13292/j.1000-4890.2009.0264
|
[29] |
朱婷婷, 王懿祥, 朱旭丹, 等. 遮光对木荷和枫香光合特性的影响[J]. 浙江农林大学学报, 2017, 34(1): 28−35. doi: 10.11833/j.issn.2095-0756.2017.01.005
Zhu T T, Wang Y X, Zhu X D, et al. Photosynthetic characteristics with shading for Schima superba and Liquidambar formosana[J]. Journal of Zhejiang A&F University, 2017, 34(1): 28−35. doi: 10.11833/j.issn.2095-0756.2017.01.005
|
[30] |
郑淑霞, 上官周平. 不同功能型植物光合特性及其与叶氮含量、比叶重的关系[J]. 生态学报, 2007, 27(1): 171−181. doi: 10.3321/j.issn:1000-0933.2007.01.020
Zheng S X, Shangguan Z P. Photosynthetic characteristics and their relationships with leaf nitrogen content and leaf mass per area in different plant functional types[J]. Acta Ecologica Sinica, 2007, 27(1): 171−181. doi: 10.3321/j.issn:1000-0933.2007.01.020
|
[31] |
Fernando V, Elsa M, Luis B, et al. Low leaf-level response to light and nutrients in mediterranean evergreen oaks: a conservative resource-use strategy[J]. New Phytologist, 2000, 148(1): 79−91. doi: 10.1046/j.1469-8137.2000.00737.x
|
[32] |
郭自春, 曾凡江, 刘波, 等. 疏叶骆驼刺和多枝柽柳不同时期光合特性日变化及其与环境因子的关系[J]. 西北植物学报, 2015, 35(1): 189−198.
Guo Z C, Zeng F J, Liu B, et al. Photosynthetic characteristics of Alhagi sparsifolia and Tamarix ramosissima and the relevant environment factors in different periods[J]. Acta Botanica Boreali-Occidentalia Sinica, 2015, 35(1): 189−198.
|
[33] |
Bakker M A, Carreno-Rocabado G, Poorter L. Leaf economics traits predict litter decomposition of tropical plants and differ among land use types[J]. Functional Ecology, 2011, 25(3): 473−483. doi: 10.1111/j.1365-2435.2010.01802.x
|
[34] |
Bengtsson F, Granath G, Rydin H. Photosynthesis, growth, and decay traits in Sphagnum: a multispecies comparison[J]. Ecology and Evolution, 2016, 6(10): 3325−3341. doi: 10.1002/ece3.2119
|
[35] |
王忠禹. 黄土丘陵区典型植被枯落物分布特征及其水文效应[D]. 杨凌: 西北农林科技大学, 2019.
Wang Z Y. The characteristics of litter distribution and its hydrological effects of typical vegetation in the loess hilly region [D]. Yangling: Northwest A&F University, 2019.
|
[36] |
牛小云. 日本落叶松枯落物分解过程及其生物学特征研究[D]. 北京: 中国林业科学研究院, 2015.
Niu X Y. The study on the process of litter decomposition and its biological characteristics in Larix kaempferi plantations [D]. Beijing: Chinese Academy of Forestry Sciences, 2015.
|
[37] |
郑东升, 刘琪璟. 环境因子对长白山自然保护区森林群落分布的影响[J]. 北京林业大学学报, 2023, 45(8): 57−64. doi: 10.12171/j.1000-1522.20220086
Zheng D S, Liu Q J. Effects of environmental factors on forest community distribution in Changbai Mountain Nature Reserve of northeastern China[J]. Journal of Beijing Forestry University, 2023, 45(8): 57−64. doi: 10.12171/j.1000-1522.20220086
|
[38] |
张海艳, 郭小城, 孔德良. 植物经济学谱、非经济学谱及其与凋落物分解的关系[J]. 生态学杂志, 2018, 37(12): 3787−3794. doi: 10.13292/j.1000-4890.201812.021
Zhang H Y, Guo X C, Kong D L. Plant economics and non-economics spectra in relation to litter decomposition: a review[J]. Chinese Journal of Ecology, 2018, 37(12): 3787−3794. doi: 10.13292/j.1000-4890.201812.021
|
[39] |
李海涛, 于贵瑞, 李家永, 等. 井冈山森林凋落物分解动态及磷、钾释放速率[J]. 应用生态学报, 2007, 18(2): 233−240. doi: 10.3321/j.issn:1001-9332.2007.02.001
Li H T, Yu G R, Li J Y, et al. Dynamics of litter decomposition and phosphorus and potassium release in Jinggang Mountain region of Jiangxi Province, China[J]. Chinese Journal of Applied Ecology, 2007, 18(2): 233−240. doi: 10.3321/j.issn:1001-9332.2007.02.001
|
[40] |
Sayer E J, Tanner E V J, Lacey A L. Effects of litter manipulation on early-stage decomposition and meso-arthropod abundance in a tropical moist forest[J]. Forest Ecology and Management, 2006, 229(1): 285−293.
|
[41] |
毛双燕. 冰雪灾害后九连山常绿阔叶林凋落物量及分解动态[D]. 北京: 北京林业大学, 2011.
Mao S Y. The input and decomposition dynamics of litterfall of a broad-leaved evergreen forest in Jiulianshan after the frozen rain and snow disaster [D]. Beijing: Beijing Forestry University, 2021.
|
1. |
王雯倩,蔡玉山,肖湘,段亮亮. 老爷岭多年冻土小流域春季冻融期径流溶解性有机碳变化特征. 生态学报. 2023(16): 6716-6727 .
![]() |