Citation: | Liu Haozheng, Wang Jianshan, Shi Guangyu. Effects of microfibril helix angle in the S2 layer of compression wood cell wall on the compressive toughness of it[J]. Journal of Beijing Forestry University, 2023, 45(4): 136-146. DOI: 10.12171/j.1000-1522.20220506 |
[1] |
张胜龙, 刘京晶, 楼雄珍, 等. 杉木应压木木质部细胞形态特征及主要代谢成分表征[J]. 北京林业大学学报, 2015, 37(5): 126−133. doi: 10.13332/j.1000-1522.20140396
Zhang S L, Liu J J, Lou X Z, et al. Morphological characteristics of cells and main metabolic components in xylem of Cunninghamia lanceolata compression wood[J]. Journal of Beijing Forestry University, 2015, 37(5): 126−133. doi: 10.13332/j.1000-1522.20140396
|
[2] |
Färber J, Lichtenegger H C, Reiterer A, et al. Cellulose microfibril angles in a spruce branch and mechanical implications[J]. Journal of Materials Science, 2001, 36(21): 5087−5092. doi: 10.1023/A:1012465005607
|
[3] |
杜明秋, 钟珊丽, 林二培, 等. 杉木应压木形成中的显微特征及主要代谢成分变化[J]. 核农学报, 2022, 36(11): 2307−2315. doi: 10.11869/j.issn.100-8551.2022.11.2307
Du M Q, Zhong S L, Lin E P, et al. Anatomy characteristics and study of alterations of key metabolic components in Cunninghamia lanceolata during compression wood formationon wood formation[J]. Journal of Nuclear Agricultural Sciences, 2022, 36(11): 2307−2315. doi: 10.11869/j.issn.100-8551.2022.11.2307
|
[4] |
Ruelle J. Morphology, anatomy and ultrastructure of reaction wood[M]. Berlin: Springer Berlin Heidelberg, 2013: 13−35.
|
[5] |
李柬龙, 陈胜, 李海潮, 等. 轻木细胞壁超微结构与力学性能关系研究[J]. 北京林业大学学报, 2022, 44(2): 115−122.
Li J L, Chen S, Li H C, et al. Relationship between cell wall ultrastructure and mechanical properties of balsa wood[J]. Journal of Beijing Forestry University, 2022, 44(2): 115−122.
|
[6] |
Adusumalli R, Raghavan R, Ghisleni R, et al. Deformation and failure mechanism of secondary cell wall in spruce late wood[J]. Applied Physics A, 2010, 100(2): 447−452. doi: 10.1007/s00339-010-5847-1
|
[7] |
张淑琴, 余雁, 费本华, 等. 杉木木材管胞纵向弹性模量的研究[J]. 北京林业大学学报, 2012, 34(6): 126−130.
Zhang S Q, Yu Y, Fei B H, et al. Longitudinal modulus of elasticity of Chinese fir tracheids[J]. Journal of Beijing Forestry University, 2012, 34(6): 126−130.
|
[8] |
余雁. 人工林杉木管胞的纵向力学性质及其主要影响因子研究[D]. 北京: 中国林业科学研究院, 2003.
Yu Y. Longitudinal mechanical properties and its main influencing factors of tracheids of Chinese fir from plantation[D]. Beijing: Chinese Academy of Forestry, 2003.
|
[9] |
孙海燕, 苏明垒, 吕建雄, 等. 细胞壁微纤丝角和结晶区对木材物理力学性能影响研究进展[J]. 西北农林科技大学学报(自然科学版), 2019, 47(5): 50−58.
Sun H Y, Su M L, Lü J X, et al. Research progress on effect of microfibril angle and crystalline area in cell wall on wood physical and mechanical properties[J]. Journal of Northwest A&F University (Natural Science Edition), 2019, 47(5): 50−58.
|
[10] |
Barrios A, Trincado G, Watt M S. Wood properties of juvenile and mature wood of Pinus radiata Don trees growing on contrasting sites in Chile[J]. Forest Science, 2017, 63(2): 184−191. doi: 10.5849/forsci.2016-060
|
[11] |
蒋坤云, 陈丽华, 杨苑君, 等. 华北油松、落叶松根系抗拉强度与其微观结构的相关性研究[J]. 水土保持学报, 2013, 27(2): 8−12. doi: 10.13870/j.cnki.stbcxb.2013.02.053
Jiang K Y, Chen L H, Yang Y J, et al. Relationship between tensile strength and selected anatomical features of two different conifer species’ roots in North China[J]. Journal of Soil and Water Conservation, 2013, 27(2): 8−12. doi: 10.13870/j.cnki.stbcxb.2013.02.053
|
[12] |
李新宇, 张明辉. 利用X射线衍射法探究木材含水率与结晶度的关系[J]. 东北林业大学学报, 2014, 42(2): 96−99. doi: 10.13759/j.cnki.dlxb.2014.02.023
Li X Y, Zang M H. Relationship of wood moisture content and the degree of crystallinity by X-Ray diffraction[J]. Journal of Northeast Forestry University, 2014, 42(2): 96−99. doi: 10.13759/j.cnki.dlxb.2014.02.023
|
[13] |
Schwiedrzik J, Raghavan R, Rüggeberg M, et al. Identification of polymer matrix yield stress in the wood cell wall based on micropillar compression and micromechanical modelling[J]. Philosophical Magazine (Abingdon, England), 2016, 96(32-34): 3461−3478. doi: 10.1080/14786435.2016.1235292
|
[14] |
赵彻. 异质材料与微结构耦合仿生设计及其3D打印[D]. 长春: 吉林大学, 2017.
Zhao C. Biomimetic design and 3D printing of composite by coupling heterogeneous materials and microstructures[D]. Changchun: Jilin University, 2017.
|
[15] |
Li X W, Yu H C, Qing H Q, et al. Helical fiber pull-out in biological materials[J]. Acta Mechanica Solida Sinica, 2016, 29(3): 245−256. doi: 10.1016/S0894-9166(16)30159-8
|
[16] |
Gao Y, Li B, Wang J, et al. Fracture toughness analysis of helical fiber-reinforced biocomposites[J]. Journal of the Mechanics and Physics of Solids, 2021, 146: 104206. doi: 10.1016/j.jmps.2020.104206
|
[17] |
Zhong W, Zhang Z, Chen X, et al. Multi-scale finite element simulation on large deformation behavior of wood under axial and transverse compression conditions[J]. Acta Mechanica Sinica, 2021, 37(7): 1136−1151. doi: 10.1007/s10409-021-01112-z
|
[18] |
Oliveira P R, Ribeiro F S L M, Panzera T H, et al. Hybrid polymer composites made of sugarcane bagasse fibres and disposed rubber particles[J]. Polymers and Polymer Composites, 2021, 29(9): S1280−S1293.
|
[19] |
苏骏, 钱维民, 郭锋, 等. 超低温对超高韧性水泥基复合材料抗压韧性影响试验[J]. 复合材料学报, 2021, 38(12): 4325−4336. doi: 10.13801/j.cnki.fhclxb.20210223.002
Su J, Qian W M, Guo F, et al. Experimental study on the influence of ultra-low temperature on compressive toughness of ultra high toughness cementitious composites[J]. Acta Materiae Compositae Sinica, 2021, 38(12): 4325−4336. doi: 10.13801/j.cnki.fhclxb.20210223.002
|
[20] |
Deng Q, Li S, Chen Y. Mechanical properties and failure mechanism of wood cell wall layers[J]. Computational Materials Science, 2012, 62: 221−226. doi: 10.1016/j.commatsci.2012.05.050
|
[21] |
Hofstetter K, Hellmich C, Eberhardsteiner J. Development and experimental validation of a continuum micromechanics model for the elasticity of wood[J]. European Journal of Mechanics-A/Solids, 2005, 24(6): 1030−1053. doi: 10.1016/j.euromechsol.2005.05.006
|
[22] |
Salmén L. Micromechanical understanding of the cell-wall structure[J]. Comptes Rendus Biologies, 2004, 327(9−10): 873−880. doi: 10.1016/j.crvi.2004.03.010
|
[23] |
刘宇. 基于木材的高强纤维素材料的构建与力学性能的研究[D]. 广州: 华南理工大学, 2019.
Liu Y. Fabrication of super strong cellulose based materials from wood and their mechanical properties[D]. Guangzhou: South China University of Technology, 2019.
|
[24] |
Marklund E, Varna J. Micromechanical modelling of wood fibre composites[J]. Plastics, Rubber & Composites, 2009, 38(2−4): 118−123.
|
[25] |
Qing H, Mishnaevsky L. 3D multiscale micromechanical model of wood: from annual rings to microfibrils[J]. International Journal of Solids and Structures, 2010, 47(9): 1253−1267. doi: 10.1016/j.ijsolstr.2010.01.014
|
[26] |
Jin K, Qin Z, Buehler M J. Molecular deformation mechanisms of the wood cell wall material[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 42: 198−206. doi: 10.1016/j.jmbbm.2014.11.010
|
[27] |
Gangwar T, Schillinger D. Microimaging-informed continuum micromechanics accurately predicts macroscopic stiffness and strength properties of hierarchical plant culm materials[J]. Mechanics of Materials, 2019, 130: 39−57. doi: 10.1016/j.mechmat.2019.01.009
|
[28] |
Hofstetter K, Hellmich C, Eberhardsteiner J. Micromechanical modeling of solid-type and plate-type deformation patterns within softwood materials: a review and an improved approach[J]. Holzforschung, 2007, 61(4): 343−351. doi: 10.1515/HF.2007.058
|
[29] |
沈观林, 胡更开, 刘彬. 复合材料力学[M]. 北京: 清华大学出版社, 2013.
Shen G L, Hu G K, Liu B. Mechanics of composite materials[M]. Beijing: Tsinghua University Press, 2013.
|
[30] |
Fei G, Clemens M A, Michael C J. Thickness-dependent stiffness of wood: potential mechanisms and implications[J]. Holzforschung, 2020, 74(12): 1079−1087. doi: 10.1515/hf-2019-0311
|
[31] |
Horbelt N, Dunlop J W C, Bertinetti L, et al. Effects of moisture and cellulose fibril angle on the tensile properties of native single Norway spruce wood fibres[J]. Wood Science and Technology, 2021, 55(5): 1305−1318. doi: 10.1007/s00226-021-01315-4
|
[32] |
Ji Z, Ma J, Zhang Z, et al. Distribution of lignin and cellulose in compression wood tracheids of Pinus yunnanensis determined by fluorescence microscopy and confocal Raman microscopy[J]. Industrial Crops and Products, 2013, 47: 212−217. doi: 10.1016/j.indcrop.2013.03.006
|
[1] | Zhang Bo, Lu Kaiyan, Zhang Xiaoyu, Wu Rongling. Root development and genetic regulation in Populus euphratica under salt stress[J]. Journal of Beijing Forestry University, 2025, 47(1): 72-84. DOI: 10.12171/j.1000-1522.20230374 |
[2] | Xu Yujin, Li Xiang, Li Yan, Jiang Luping, Zhang Feifan, Wang Qi, Wang Lixing, Zhao Xiyang. Dynamic changes in seed, cone traits and nutritional components of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2024, 46(7): 67-76. DOI: 10.12171/j.1000-1522.20220148 |
[3] | Sun Zhilin, Liu Bing, Li Xiaowei, Tian Yuzhen, Zhang Qing, Cao Qingqin. Functional research of transcription factor CmHAT1 regulating the development of somatic embryo in Castanea mollissima[J]. Journal of Beijing Forestry University, 2024, 46(5): 73-81. DOI: 10.12171/j.1000-1522.20230215 |
[4] | Li Yapeng, Sun Yuhan, Lin Huazhong, Fang Luming, Yu Xiaolong, Weng Jianyu, Zhang Yungen, Li Yun. Correlations between microsporogenesis and male cone development of Cunninghamia lanceolata[J]. Journal of Beijing Forestry University, 2023, 45(1): 51-58. DOI: 10.12171/j.1000-1522.20210251 |
[5] | Liu Yang, Li Bangtong, Du Guihua, Huang Dongxu, Zhou Xianqing, Niu Shihui, Li Wei. Expression profiles and regulation of FT/TFL1-like genes in Pinus tabuliformis[J]. Journal of Beijing Forestry University, 2018, 40(10): 60-66. DOI: 10.13332/j.1000-1522.20180040 |
[6] | ZHANG Min, ZHANG Wei, GONG Zai-xin, ZHENG Cai-xia. Morphologic and anatomical observations in the process of ovulate strobilus generation and development in Pinus tabuliformis[J]. Journal of Beijing Forestry University, 2017, 39(6): 1-12. DOI: 10.13332/j.1000-1522.20160411 |
[7] | LI Zhe-xin, NIU Shi-hui, GAO Qiong, LI Wei.. Cytological study of gibberellin regulated xylem development.[J]. Journal of Beijing Forestry University, 2014, 36(2): 68-73. |
[8] | MA Yu-lei, TANG Xing-lin, LI Xiao-yuan, PAN Hui-tang, ZHANG Qi-xiang.. Effects of photoperiod and temperature on growth and development of Primula maximowiczii.[J]. Journal of Beijing Forestry University, 2013, 35(5): 97-103. |
[9] | LI Guo-lei, LIU Yong, L Rui-heng, YU Hai-qun, LI Rui-sheng. Responses of understory vegetation development to regulation of tree density in Larix principisrupprechtii plantations.[J]. Journal of Beijing Forestry University, 2009, 31(1): 19-24. |
[10] | BAO Ren-yan, JIANG Chun-ning, ZHENG Cai-xia, DING Kun-shan. Molecular mechanism of the regulation of female gametophyte development in plants[J]. Journal of Beijing Forestry University, 2005, 27(4): 90-96. |
1. |
翁慧莹,刘益鹏,杨黔越,叶兴状,毕远洋,张国防,陈世品,刘宝. 福建柏地理分布及随气候变化的分布格局模拟. 生态学报. 2025(01): 137-146 .
![]() | |
2. |
罗楚滢,佘济云,唐子朝. 基于SSPs气候场景的濒危植物银杉潜在分布区预测. 南京林业大学学报(自然科学版). 2024(01): 161-168 .
![]() | |
3. |
童丽丽,程瑶,许晓岗,王洪超,田露,蒋孝禹. 未来气候变化下白花龙在我国的潜在适生区预测. 浙江林业科技. 2024(05): 1-8 .
![]() | |
4. |
肖模佳,徐放,张炳建,曾梓锋. 国有林场珍贵树种发展策略浅析. 农业与技术. 2023(01): 42-44 .
![]() | |
5. |
张华峰. 珍稀濒危物种金斑喙凤蝶在我国潜在适生区预测. 井冈山大学学报(自然科学版). 2023(03): 56-62 .
![]() | |
6. |
何学高,刘欢,张婧,程炜,丁鹏,贾丰铭,李卿,刘超. 基于优化的MaxEnt模型预测青海省祁连圆柏潜在分布区. 北京林业大学学报. 2023(12): 19-31 .
![]() | |
7. |
刘佳琪,魏广阔,史常青,赵廷宁,钱云楷. 基于MaxEnt模型的北方抗旱造林树种适宜区分布. 北京林业大学学报. 2022(07): 63-77 .
![]() |