• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zhang Xingxin, Zhang Kai, Zhao Liming, Deng Yuhui, Deng Lijia. Numerical simulation on wind-sand flow field at the bridge and roadbed transition section of Golmud-Korla Railway in northwestern China[J]. Journal of Beijing Forestry University, 2022, 44(2): 75-81. DOI: 10.12171/j.1000-1522.20210213
Citation: Zhang Xingxin, Zhang Kai, Zhao Liming, Deng Yuhui, Deng Lijia. Numerical simulation on wind-sand flow field at the bridge and roadbed transition section of Golmud-Korla Railway in northwestern China[J]. Journal of Beijing Forestry University, 2022, 44(2): 75-81. DOI: 10.12171/j.1000-1522.20210213

Numerical simulation on wind-sand flow field at the bridge and roadbed transition section of Golmud-Korla Railway in northwestern China

More Information
  • Received Date: June 06, 2021
  • Revised Date: September 14, 2021
  • Available Online: January 11, 2022
  • Published Date: February 24, 2022
  •   Objective  This paper aims to explore the distribution law of the flow field, horizontal wind speed and sand accumulation characteristics in the transition section between the bridge and the roadbed (bridge-road) and near the roadbed, and reveal the formation mechanism of sand damage in the bridge-road transition section.
      Method  By means of numerical simulation, the flow field changes and the characteristics of sand accumulation in the bridge-road transition section and near the roadbed under different incoming wind speeds were studied. And use the numerical simulation of the sand distribution to compare with the actual on-site sand accumulation to verify the accuracy of the numerical simulation results.
      Result  When the wind-sand flow moved to the bridge-road transition section, it was hindered by the bridge-road transition section, resulting in speed divisions. Air flow deceleration zone, current collection acceleration zone, high speed zone, vortex cyclone zone and air flow recovery zone were formed, respectively, and the area of the deceleration zone on the leeward side of the bridge-road transition sectionwas significantly larger than that on the leeward side of the subgrade. Near the surface of the bridge-road transition section, the airflow velocity first decreased (negative value), then increased and then decreased (negative value), and finally returned to the incoming wind speed gradually. At a height of 4.2 m from the ground, the velocity change basically showed a V-shaped distribution, and at a height of 4.4 m from the ground, the velocity change basically showed a double-V-shaped distribution. According to the numerical simulation results, therewas more sand on the windward and leeward sides of the bridge-to-road transition section, and the clearance under the bridge was a good sand-crossing section. Most of the sand particles were transported to the leeward side of the bridge and will not deposit a lot on the bottom of the beam. Sand accumulation on the roadbed mainly occurred on the windward side and rarely on the leeward side.
      Conclusion  As time goes by, the sand near the transition section of the bridge and road will slowly spread to the surrounding area. One part is deposited at the bottom of the beam, causing sand at the bottom of the beam, and the other part jumps over the subgrade and enters the track bed. Therefore, the prevention and control of sand hazards in the transitional section of bridges and roads cannot be ignored. The accumulated sand must be cleaned regularly to prevent sand particles from entering the track bed and steel rails and endangering driving safety.
  • [1]
    吴正. 风沙地貌与治沙工程学[M]. 北京: 科学出版社, 2010.

    Wu Z. Geomorphology of wind-drift sands and their controlled engineering [M]. Beijing: Science Press, 2010.
    [2]
    Mehdipour R, Baniamerian Z. A new approach in reducing sand deposition on railway tracks to improve transportation[J/OL]. Aeolian Research, 2019[2021−07−13]. DOI: 10.1016/j.aeolia.2019.07.003
    [3]
    Zhang K C, Qu J J, Liao K T, et al. Damage by wind-blown sand and its control along Qinghai-Tibet Railway in China[J]. Aeolian Research, 2010, 1(3−4): 143−146. doi: 10.1016/j.aeolia.2009.10.001
    [4]
    Wang T, Qu, J J, Ling Y Q, et al. Wind tunnel test on the effect of metal net fences on sand flux in a gobi desert, China[J]. Journal of Arid Land, 2017, 9(6): 888−899. doi: 10.1007/s40333-017-0068-5
    [5]
    Tan L H, An Z S, Zhang K, et al. Intermittent aeolian saltation over a gobi surface: threshold, saltation layer height, and high-frequency variability[J]. Journal of Geophysical Research: Earth Surface, 2020, 125(1): 1−13.
    [6]
    Zhang K, Zhao P W, Zhao J J, et al. Protective effect of multi-row HDPE board sand fences: a wind tunnel study[J]. International Soil and Water Conservation Research, 2021, 9(1): 103−115. doi: 10.1016/j.iswcr.2020.08.006
    [7]
    Xu B, Zhang J, Huang N, et al. Characteristics of turbulent aeolian sand movement over straw checkerboard barriers and formation mechanisms of their internal erosion form[J]. Journal of Geophysical Research, 2018, 123(13): 6907−6919.
    [8]
    Tan L H, Zhang W M, Qu J J, et al. Aeolian sediment transport over gobi: field studies a top the mogao grottoes, China[J]. Aeolian Research, 2016(21): 53−60.
    [9]
    鱼燕萍, 肖建华, 屈建军, 等. 两种典型高等级公路路基断面风沙过程的风洞模拟[J]. 中国沙漠, 2019, 39(1): 68−79.

    Yu Y P, Xiao J H, Qu J J, et al. Wind tunnel simulation of aeolian sand process in subgrade section of two typical high-grade highway[J]. Journal of Desert Research, 2019, 39(1): 68−79.
    [10]
    He W, Huang N, Dun H C, et al. CFD evaluation of erosion rate around a bridge near a sand dune[J/OL]. Journal of Physics: Conference Series, 2017, 822[2021−08−22]. https://iopscience.iop.org/article/10.1088/1742-6596/822/1/012044.
    [11]
    石龙, 蒋富强, 韩峰, 等. 风沙两相流对铁路路堤响应规律的数值模拟研究[J]. 铁道学报, 2014, 36(5): 82−87.

    Shi L, Jiang F Q, Han F, et al. Numerical Simulation of Response Law of Wind-blown Sand Flow around the Railway Embankment[J]. Journal of the China Railway Society, 2014, 36(5): 82−87.
    [12]
    王德鑫. 双层防风挡沙墙的风沙两相流数值模拟[D]. 兰州: 兰州大学, 2020.

    Wang D X. Numerical Simulation of Wind-sand two-phase Flow in Double-layer Windshield Anti-sand Wall[D]. Lanzhou: Lanzhou University, 2020.
    [13]
    张凯, 杨子江, 王起才, 等. 格库铁路HDPE板沙障孔隙率与有效防护距离关系[J]. 中国铁道科学, 2019, 40(5): 16−21. doi: 10.3969/j.issn.1001-4632.2019.05.03

    Zhang K, Yang Z J, Wang Q C, et al. Relationship between porosity and effective protection distance of HDPE board sand barrier on Golmud-Korla Railway[J]. China Railway Science, 2019, 40(5): 16−21. doi: 10.3969/j.issn.1001-4632.2019.05.03
    [14]
    张凯, 王起才, 杨子江, 等. 新建格库铁路HDPE板高立式沙障防风效益数值模拟研究[J]. 铁道学报, 2019, 41(3): 169−175. doi: 10.3969/j.issn.1001-8360.2019.03.023

    Zhang K, Wang Q C, Yang Z J, et al. Research on numerical simulation on wind protection benefits of HDPE panels with high vertical sand barrier in the newly-built Golmud-Korla Railway[J]. Journal of the China Railway Society, 2019, 41(3): 169−175. doi: 10.3969/j.issn.1001-8360.2019.03.023
    [15]
    张凯. 格库铁路青海段风沙灾害工程防治研究[D]. 兰州: 兰州交通大学, 2019.

    Zhang K. Study on the control engineering of wind-blown sand disasters along the Qinghai Section of Golmud-Korla Railway[D]. Lanzhou: Lanzhou Jiaotong University, 2019.
    [16]
    王文博, 黄宁, 顿洪超. 沙丘背风侧不同铁路结构形式对风沙环境的适应性分析[J]. 力学学报, 2020, 52(3): 680−688. doi: 10.6052/0459-1879-20-043

    Wang W B, Huang N, Dun H C. Analysis of wind-sand movement over sand dune with difffferent railway forms downstream[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 680−688. doi: 10.6052/0459-1879-20-043
  • Cited by

    Periodical cited type(33)

    1. 王文舒,甘晓雪,张斌武,贾晓鹏,谭天逸,王智,杨旭. 不同材料沙障的防风固沙效果与成本效益分析. 北京农学院学报. 2025(01): 5-12 .
    2. 丛龙宇,许丽,张春良,陈翔,刘瑞瑶. 内蒙古草原煤矿区排土场不同规格树枝沙障的防风效益. 西北林学院学报. 2024(02): 141-147 .
    3. 马泽,蒙仲举,罗建国,阿拉腾陶格苏,赵东颖. 乌兰布和沙漠典型沿黄段格状沙障防风固沙效应. 水土保持通报. 2024(02): 1-10+21 .
    4. 姚正毅,屈建军,肖建华,王茹燕,韩胜利,陆文赋. 刷状沙柳沙障固沙性能风洞模拟. 中国沙漠. 2024(03): 290-297 .
    5. 苏宇,袁立敏,党晓宏,蒙仲举,辛静,郭强. 风滚植物高立式沙障防风效应研究. 内蒙古林业科技. 2024(03): 7-13 .
    6. 朱泊年,党晓宏,蒙仲举,蔺博,刘平. 乌珠穆沁沙地生物基可降解聚乳酸(PLA)沙障防风固沙效益. 水土保持研究. 2023(02): 431-437 .
    7. 田美荣,田雨欣,杨伟超,冯朝阳,高吉喜,王世曦. 不同规格芦苇沙障生态保护成效研究. 环境工程技术学报. 2023(02): 753-759 .
    8. 周炎广,李红悦,武子丰,王卓然,殷婕,青达木尼,哈斯额尔敦. 毛乌素沙地沙障固沙机制与效益评估. 科学通报. 2023(11): 1312-1329 .
    9. 邴丹珲,谈嫣蓉,陈文业,朱丽,马超,王斌杰,张洋东,肖云飞,吕斌燕. 我国沙障的研究进展与应用综述. 中国水土保持. 2023(07): 37-40+69 .
    10. 吴青山,朱棉豪,万宏强,张雨暄,申青松,杨莹. 基于沙漠治理的沙漠草方格铺设机设计与分析. 科学技术创新. 2023(20): 195-198 .
    11. 丛龙宇,许丽,张春良,王银龙,胡努斯吐,齐海涵. 草原矿区排土场沙障的生态保护成效. 水土保持通报. 2023(06): 193-199 .
    12. 崔健,党晓宏,汪季,张超,李婉娇,靳灵娜. 不同规格可降解沙障铺设5年后土壤粒度及有机质特征. 水土保持研究. 2022(02): 92-98 .
    13. 李双立,黄海广,党晓宏,郭跃,万俊华. 基于CNKI数据库文献计量视角下沙障研究现状. 防护林科技. 2022(05): 75-78+85 .
    14. 王永珍,林永一,冯怡琳,赵文智,董六文,刘继亮. 沙障对流动沙丘区地表节肢动物分布及多样性的影响. 生态学报. 2022(16): 6768-6777 .
    15. 池政,徐先英,刘开琳,刘虎俊,孟瑞玲,李亚琦,富丽,李雪宁. 2种沙障内积砂粒径特征及其空间格局观测研究. 水土保持学报. 2021(02): 113-121 .
    16. 李镯,汪季,焦宏远,郭彧. 基于破损规律及植物保存率的沙障选择. 西北林学院学报. 2021(02): 130-135 .
    17. 祁帅,汪季,党晓宏,魏亚娟,丁奋谦. 3种低立式沙障内表层沉积物粒度特征研究. 干旱区研究. 2021(03): 875-881 .
    18. 邓友生,彭程谱,刘俊聪,付云博,李令涛. 沙漠公路灾害防治方法及其工程应用. 公路. 2021(06): 345-351 .
    19. 靳灵娜,党晓宏,高永,韩彦隆,雷虹娟,张超. 库布齐沙漠北缘机械沙障对地表土壤可蚀性的影响. 水土保持通报. 2021(03): 50-55 .
    20. 张帅,丁国栋,高广磊,孙桂丽,赵媛媛,于明含,丛智杰,包岩峰. 硬质地HDPE沙障防风效益的风洞试验. 北京林业大学学报. 2020(03): 127-133 . 本站查看
    21. 李莹,曲浩,石永强,张志军,佟布和,曹辉,张明,吴晶. 聚乳酸纤维沙障对植被生长的影响——以巴音温都尔沙漠封禁保护区为例. 内蒙古林业科技. 2020(01): 12-15 .
    22. 王逸敏,刘康,屈建军. 沙障对流沙地植被和土壤养分的影响. 中国沙漠. 2019(03): 56-65 .
    23. 居炎飞,邱明喜,朱纪康,张家铭,周杨. 我国固沙材料研究进展与应用前景. 干旱区资源与环境. 2019(10): 138-144 .
    24. 丁新辉,刘孝盈,刘广全,朱毕生,王炜炜. 京津风沙源区沙障固沙技术评价指标体系构建. 生态学报. 2019(16): 5778-5786 .
    25. 刘湘杰,党晓宏,汪季,丁延龙,焦宏远. 生物基可降解聚乳酸沙障的蚀积特征. 水土保持通报. 2019(05): 113-119 .
    26. Chang Zhaofeng,Liu Shizeng,Wang Qi,Liu Shujuan,Wang Fei. Progress and Problems of Development Research and Application of Sand Barriers. Meteorological and Environmental Research. 2018(03): 18-23+29 .
    27. 丁延龙,高永,汪季,孙晓瑞,党晓宏,韩彦隆,李鹏. 生物基可降解聚乳酸(PLA)沙障对沙丘表层沉积物粒度特征的影响. 中国沙漠. 2018(02): 262-269 .
    28. 孙浩,刘晋浩,黄青青,赵可. 多边形草沙障防风效果研究. 北京林业大学学报. 2017(10): 90-94 . 本站查看
    29. 魏亚娟,左小锋,汪季,党晓宏,刘湘杰. PLA沙障在荒漠化防治中的应用综述. 内蒙古农业大学学报(自然科学版). 2017(06): 86-93 .
    30. 孙浩,刘晋浩,黄青青. 沙障地表形态衍化数值模拟方法研究. 农业机械学报. 2017(07): 265-271 .
    31. 李鹏,高永,赵青,韩彦隆,丁延龙,党晓宏. 乌兰布和沙漠东北缘人工梭梭林防风效能分析. 水土保持通报. 2017(05): 34-39 .
    32. 李锦荣,郭建英,董智,何京丽,刘艳萍,珊丹,赵纳祺. 乌兰布和沙漠沿黄段不同治理措施的风沙运移特征及其防护效果. 干旱区资源与环境. 2016(08): 113-119 .
    33. 赵文玲. 新型生物可降解PLA沙袋沙障降解特性及其影响因子探究. 水土保持研究. 2015(06): 198-202 .

    Other cited types(27)

Catalog

    Article views (869) PDF downloads (48) Cited by(60)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return