• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Hao Guobao, Wang Lidong, Li Yan, Li Fan, Cui Jingting, Jia Zhongkui. Effects of nitrogen addition on the branch CO2 efflux of Larix principis-rupprechtii[J]. Journal of Beijing Forestry University, 2023, 45(10): 28-35. DOI: 10.12171/j.1000-1522.20220336
Citation: Hao Guobao, Wang Lidong, Li Yan, Li Fan, Cui Jingting, Jia Zhongkui. Effects of nitrogen addition on the branch CO2 efflux of Larix principis-rupprechtii[J]. Journal of Beijing Forestry University, 2023, 45(10): 28-35. DOI: 10.12171/j.1000-1522.20220336

Effects of nitrogen addition on the branch CO2 efflux of Larix principis-rupprechtii

More Information
  • Received Date: August 11, 2022
  • Revised Date: September 12, 2022
  • Accepted Date: July 06, 2023
  • Available Online: July 09, 2023
  • Objective 

    Branch CO2 efflux is one of the important components of stand carbon release. Studying the change of branch CO2 efflux of Larix principis-rupprechtii under simulated nitrogen deposition could provide a theoretical basis for the management of carbon sequestration and sink increase of L. principis-rupprechtii forest under the background of nitrogen deposition.

    Method 

    25-year-old and 32-year-old plantations of L. principis-rupprechtii were selected. Four nitrogen addition treatments, i.e. control (CK, 0 kg/(ha·year)), low nitrogen (N1, 75 kg/(ha·year)), medium nitrogen (N2, 150 kg/(ha·year)) and high nitrogen (N3, 225 kg/(ha·year)) were set. From June to October in 2021, the branch CO2 efflux was monitored in situ using LI-8100A, and the branch samples were collected to determine the nitrogen content.

    Result 

    (1) The CO2 efflux and air temperature of L. principis-rupprechtii branches basically showed a “single-peak” monthly change, and the peak appeared from June to August. The air temperature could explain the changes of branch CO2 efflux of two stands by 37%−82% and 40%−70%, respectively.(2) The average branch CO2 efflux of L. principis-rupprechtii at 25-year-old and 32-year-old from June to October showed an increasing trend with the increase of N addition intensity, but only differed significantly under N3 treatment (P < 0.05). The CO2 efflux of CK, N1 and N2 treatments at 25-year-old was significantly higher than that at 32-year-old (P < 0.05). The temperature sensitivity (Q10) of branch CO2 efflux was decreased by N addition except for 32-year-old plantations under N1 treatment. (3) Nitrogen addition significantly increased the 25-year-old branch nitrogen content; there was no significant change in shoot nitrogen content in 32-year-old branch nitrogen content (P > 0.05). There was a significantly negative linear relationship between the branch CO2 efflux of L. principis-rupprechtii and the branch nitrogen content at both ages (P < 0.01). The nitrogen content can explain 16% (25-year-old) and 32% (32-year-old) variation of branch CO2 efflux.

    Conclusion 

    The branch CO2 efflux is affected by air temperature, nitrogen addition and forest age. All three factors should be considered when constructing a tree carbon release model of L. principis-rupprechtii.

  • [1]
    Fang J Y, Yu G Y, Liu L L, et al. Climate change, human impacts, and carbon sequestration in China[J]. Proceedings of the National Academy of Sciences, 2018, 115(16): 4015−4020. doi: 10.1073/pnas.1700304115
    [2]
    朴世龙, 岳超, 丁金枝, 等. 试论陆地生态系统碳汇在“碳中和”目标中的作用[J]. 中国科学: 地球科学, 2022, 52(7): 1419−1426.

    Piao S L, Yue C, Ding J Z, et al. Perspectives on the role of terrestrial ecosystems in the ‘carbon neutrality’ strategy[J]. Science China Earth Sciences, 2022, 52(7): 1419−1426.
    [3]
    Martínez-García E, Dadi T, Rubio E, et al. Aboveground autotrophic respiration in a Spanish black pine forest: comparison of scaling methods to improve component partitioning[J]. Science of the Total Environment, 2017, 580: 1505−1517. doi: 10.1016/j.scitotenv.2016.12.136
    [4]
    Kim M H, Nakane K, Lee J T, et al. Stem/branch maintenance respiration of Japanese red pine stand[J]. Forest Ecology and Management, 2007, 243(2): 283−290.
    [5]
    Campioli M, Malhi Y, Vicca S, et al. Evaluating the convergence between eddy-covariance and biometric methods for assessing carbon budgets of forests[J]. Nature Communications, 2016, 7(1): 13717. doi: 10.1038/ncomms13717
    [6]
    Bloemen J, Mcguire M A, Aubrey D P, et al. Transport of root-respired CO2 via the transpiration stream affects aboveground carbon assimilation and CO2 efflux in trees[J]. New Phytologist, 2013, 197(2): 555−565. doi: 10.1111/j.1469-8137.2012.04366.x
    [7]
    张茜茜, 杨庆朋, 刘亮, 等. 环剥对毛白杨树干表面CO2通量及其温度敏感性的影响[J]. 林业科学, 2019, 55(5): 1−10.

    Zhang X X, Yang Q P, Liu L, et al. Effects of girdling on stem CO2 efflux and its temperature sensitivity of Populus tomentosa[J]. Scientia Silvae Sinicae, 2019, 55(5): 1−10.
    [8]
    贺同鑫, 赵国华, 刘兰兰, 等. 遮光对杉木幼苗树干表面CO2通量的影响[J]. 生态学报, 2019, 39(6): 2131−2138.

    He T X, Zhao G H, Liu L L, et al. Effects of shading on stem surface CO2 effluxes of Chinese fir seedlings[J]. Acta Ecologica Sinica, 2019, 39(6): 2131−2138.
    [9]
    赵广, 刘刚才, 朱万泽. 贡嘎山峨眉冷杉树干呼吸空间特征及其对温度的响应[J]. 生态学报, 2018, 38(8): 2732−2742.

    Zhao G, Liu G C, Zhu W Z. Spatial variations in the stem CO2 efflux rate of Abies fabri and the response to temperature in the Gongga Mountains[J]. Acta Ecologica Sinica, 2018, 38(8): 2732−2742.
    [10]
    赵琼, 刘兴宇, 胡亚林, 等. 氮添加对兴安落叶松养分分配和再吸收效率的影响[J]. 林业科学, 2010, 46(5): 14−19.

    Zhao Q, Liu X Y, Hu Y L, et al. Effects of nitrogen addition on nutrient allocation and nutrient resorption efficiency in Larix gmelinii[J]. Scientia Silvae Sinicae, 2010, 46(5): 14−19.
    [11]
    唐月坤, 王嗣奇, 张彦东. 氮磷施肥对落叶松叶片非结构性碳浓度的影响[J]. 森林工程, 2018, 34(4): 1−6. doi: 10.3969/j.issn.1006-8023.2018.04.001

    Tang Y K, Wang S Q, Zhang Y D. Effect of nitrogen and phosphorus fertilizers on foliar non-structural carbohydrates concentration in Larix olgensis[J]. Forest Engineering, 2018, 34(4): 1−6. doi: 10.3969/j.issn.1006-8023.2018.04.001
    [12]
    魏丽娜, 周冠军, 孙海龙, 等. 氮磷施肥对水曲柳叶片光合特征及体内非结构性碳的影响[J]. 森林工程, 2021, 37(5): 20−27.

    Wei L N, Zhou G J, Sun H L, et al. Effects of nitrogen and phosphorus fertilization on the net photosynthetic rate and non-structural carbohydrate of Fraxinus mandshurica[J]. Forest Engineering, 2021, 37(5): 20−27.
    [13]
    邹安龙, 李修平, 倪晓凤, 等. 模拟氮沉降对北京东灵山辽东栎林树木生长的影响[J]. 植物生态学报, 2019, 43(9): 783−792. doi: 10.17521/cjpe.2018.0232

    Zou A L, Li X P, Ni X F, et al. Responses of tree growth to nitrogen addition in Quercus wutaishanica forests in Mount Dongling, Beijing, China[J]. Chinese Journal of Plant Ecology, 2019, 43(9): 783−792. doi: 10.17521/cjpe.2018.0232
    [14]
    孙涛, 刘瑞鹏, 李兴欢, 等. 模拟氮沉降对东北地区兴安落叶松树干呼吸的影响[J]. 生态学报, 2015, 35(11): 3684−3691.

    Sun T, Liu R P, Li X H, et al. Effects of simulated nitrogen deposition on stem respiration of Larix gmelinii Rupr. in northeastern China[J]. Acta Ecologica Sinica, 2015, 35(11): 3684−3691.
    [15]
    Gong C J, Wang A Z, Yuan F H, et al. Effects of soil nitrogen addition on crown CO2 exchange of Fraxinus mandshurica Rupr. saplings[J]. Forests, 2021, 12(9): 1170. doi: 10.3390/f12091170
    [16]
    Maier C A, Zarnoch S J, Dougherty P M. Effects of temperature and tissue nitrogen on dormant season stem and branch maintenance respiration in a young loblolly pine (Pinus taeda) plantation[J]. Tree Physiology, 1998, 18(1): 11−20. doi: 10.1093/treephys/18.1.11
    [17]
    Reich P B, Tjoelker M G, Pregitzer K S, et al. Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants[J]. Ecology Letters, 2008, 11(8): 793−801. doi: 10.1111/j.1461-0248.2008.01185.x
    [18]
    Wieser G, Bahn M. Seasonal and spatial variation of woody tissue respiration in a Pinus cembra tree at the alpine timberline in the central Austrian Alps[J]. Trees, 2004, 18(5): 576−580.
    [19]
    贾彦龙, 李倩茹, 许中旗, 等. 基于CO2FIX模型的华北落叶松人工林碳循环过程[J]. 植物生态学报, 2016, 40(4): 405−415. doi: 10.17521/cjpe.2015.0208

    Jia Y L, Li Q R, Xu Z Q, et al. Carbon cycle of larch plantation based on CO2FIX model[J]. Chinese Journal of Plant Ecology, 2016, 40(4): 405−415. doi: 10.17521/cjpe.2015.0208
    [20]
    Zhao K J, Dong B Q, Jia Z K, et al. Effect of climatic factors on the temporal variation of stem respiration in Larix principis-rupprechtii Mayr[J]. Agricultural and Forest Meteorology, 2018, 248: 441−448. doi: 10.1016/j.agrformet.2017.10.033
    [21]
    Zhao K J, Zheng M X, Fahey T J, et al. Vertical gradients and seasonal variations in the stem CO2 efflux of Larix principis-rupprechtii Mayr[J]. Agricultural and Forest Meteorology, 2018, 262: 71−80. doi: 10.1016/j.agrformet.2018.07.003
    [22]
    Zhao K J, Fahey T J, Wang X Z, et al. Effect of thinning intensity on the stem CO2 efflux of Larix principis-rupprechtii Mayr[J]. Forest Ecosystems, 2021, 8: 63. doi: 10.1186/s40663-021-00346-4
    [23]
    盛浩, 周萍. 树干/枝呼吸作用对环境变化的响应[J]. 生态学杂志, 2011, 30(8): 1822−1829. doi: 10.13292/j.1000-4890.2011.0264

    Sheng H, Zhou P. Responses of stem/branch respiration to environmental change: a review[J]. Chinese Journal of Ecology, 2011, 30(8): 1822−1829. doi: 10.13292/j.1000-4890.2011.0264
    [24]
    Wang Z, Zhang X, Liu L, et al. Spatial and seasonal patterns of atmospheric nitrogen deposition in North China[J]. Atmospheric and Oceanic Science Letters, 2020, 13(3): 188−194. doi: 10.1080/16742834.2019.1701385
    [25]
    Yu G R, Jia Y L, He N P, et al. Stabilization of atmospheric nitrogen deposition in China over the past decade[J]. Nature Geoscience, 2019, 12(6): 424−429. doi: 10.1038/s41561-019-0352-4
    [26]
    Guidolotti G, de Dato G, Liberati D, et al. Canopy chamber: a useful tool to monitor the CO2 exchange dynamics of shrubland[J]. iForest-Biogeosciences and Forestry, 2017, 10(3): 597. doi: 10.3832/ifor2209-010
    [27]
    Yang Y, Zhao M, Xu X T, et al. Diurnal and seasonal change in stem respiration of Larix principis-rupprechtii trees, northern China[J]. PLoS ONE, 2014, 9(2): e89294. doi: 10.1371/journal.pone.0089294
    [28]
    Zhao G, Liu G C, Zhu W Z, et al. Stem CO2 efflux of Abies fabri in subalpine forests in the Gongga Mountains, eastern Tibetan Plateau[J]. Journal of Plant Ecology, 2017, 10(6): 1001−1011.
    [29]
    韩风森, 胡聃, 王晓琳, 等. 北京2种阔叶树不同高度枝干的呼吸速率及其对温度的敏感性[J]. 植物生态学报, 2015, 39(2): 197−205. doi: 10.17521/cjpe.2015.0019

    Han F S, Hu D, Wang X L, et al. Respiration rates of stems at different heights and their sensitivity to temperature in two broad-leaved trees in Beijing[J]. Chinese Journal of Plant Ecology, 2015, 39(2): 197−205. doi: 10.17521/cjpe.2015.0019
    [30]
    韩风森, 王晓琳, 胡聃. 北京典型树种木质组织碳释放速率温度敏感性的时间变化规律和铅锤分异特征[J]. 生态学报, 2018, 38(2): 595−605.

    Han F S, Wang X L, Hu D. Temporal dynamics and vertical variations in the temperature sensitivity of woody-tissue CO2 efflux for typical tree species in Beijing[J]. Acta Ecologica Sinica, 2018, 38(2): 595−605.
    [31]
    Darenova E, Horáček P, Krejza J, et al. Seasonally varying relationship between stem respiration, increment and carbon allocation of Norway spruce trees[J]. Tree Physiology, 2020, 40(7): 943−955. doi: 10.1093/treephys/tpaa039
    [32]
    Ryan M G, Cavaleri M A, Almeida A C, et al. Wood CO2 efflux and foliar respiration for Eucalyptus in Hawaii and Brazil[J]. Tree Physiology, 2009, 29(10): 1213−1222. doi: 10.1093/treephys/tpp059
    [33]
    Lintunen A, Preisler Y, Oz I, et al. Bark transpiration rates can reach needle transpiration rates under dry conditions in a semi-arid forest[J]. Frontiers in Plant Science, 2021, 12: 790684. doi: 10.3389/fpls.2021.790684
    [34]
    Westerband A C, Wright I J, Eller A S D, et al. Nitrogen concentration and physical properties are key drivers of woody tissue respiration[J]. Annals of Botany, 2022, 129(6): 633−646. doi: 10.1093/aob/mcac028
    [35]
    岳国强, 侯瑞丽, 闫鑫泽, 等. 土壤氮浓度对油松天然林新生枝叶碳氮磷含量的影响[J]. 森林与环境学报, 2022, 42(1): 38−45.

    Yue G Q, Hou R L, Yan X Z, et al. Effect of soil nitrogen concentration on the contents of carbon, nitrogen and phosphorus of new branches and leaves of Pinus tabuliformis natural forest stand[J]. Journal of Forest and Environment, 2022, 42(1): 38−45.
    [36]
    Li Z, Qiu X, Sun Y, et al. C: N: P stoichiometry responses to 10 years of nitrogen addition differ across soil components and plant organs in a subtropical Pleioblastus amarus forest[J]. Science of the Total Environment, 2021, 796: 148925. doi: 10.1016/j.scitotenv.2021.148925
    [37]
    洪琮浩, 洪震, 雷小华, 等. 氮添加对长序榆C、N、P养分含量及非结构性碳水化合物含量的影响[J]. 林业科学, 2020, 56(6): 186−192.

    Hong C H, Hong Z, Lei X H, et al. Effects of nitrogen addition on contents of C, N and P nutrient and non-structural carbohydrate in Ulmus elongata[J]. Scientia Silvae Sinicae, 2020, 56(6): 186−192.
    [38]
    Berveiller D, Fresneau C, Damesin C. Effect of soil nitrogen supply on carbon assimilation by tree stems[J]. Annals of Forest Science, 2010, 67(6): 609. doi: 10.1051/forest/2010022
    [39]
    Sendall K M, Reich P B. Variation in leaf and twig CO2 flux as a function of plant size: a comparison of seedlings, saplings and trees[J]. Tree Physiology, 2013, 33(7): 713−729. doi: 10.1093/treephys/tpt048
    [40]
    赵亚芳, 徐福利, 王渭玲, 等. 华北落叶松根茎叶碳氮磷含量及其化学计量学特征的季节变化[J]. 植物学报, 2014, 49(5): 560−568. doi: 10.3724/SP.J.1259.2014.00560

    Zhao Y F, Xu F L, Wang W L, et al. Seasonal variation in contents of C, N and P and stoichiometry characteristics in fine roots, stems and needles of Larix principis-rupprechtii[J]. Chinese Bulletin of Botany, 2014, 49(5): 560−568. doi: 10.3724/SP.J.1259.2014.00560
  • Related Articles

    [1]Xu Pengfei, Zhang Houjiang, Xin Zhenbo, Yuan Jiangyu. Numerical simulation of neutral axis in transverse bending of tree trunk[J]. Journal of Beijing Forestry University, 2024, 46(8): 1-14. DOI: 10.12171/j.1000-1522.20240073
    [2]Xing Yuhua, Zhang Dapeng, Li Siying, Wang Pei. Integration and simulation analysis of temperature gradient based 3T and resistance-based evapotranspiration model[J]. Journal of Beijing Forestry University, 2024, 46(4): 115-126. DOI: 10.12171/j.1000-1522.20230198
    [3]Liu Haozheng, Wang Jianshan, Shi Guangyu. Effects of microfibril helix angle in the S2 layer of compression wood cell wall on the compressive toughness of it[J]. Journal of Beijing Forestry University, 2023, 45(4): 136-146. DOI: 10.12171/j.1000-1522.20220506
    [4]Zhang Xingxin, Zhang Kai, Zhao Liming, Deng Yuhui, Deng Lijia. Numerical simulation on wind-sand flow field at the bridge and roadbed transition section of Golmud-Korla Railway in northwestern China[J]. Journal of Beijing Forestry University, 2022, 44(2): 75-81. DOI: 10.12171/j.1000-1522.20210213
    [5]Yu Yongzhu, Guan Cheng, Zhang Houjiang, Yao Xiaorui, Zhang Dian, Xin Zhenbo. Numerical simulation on the influence of wall wood column defects on the safety of ancient building[J]. Journal of Beijing Forestry University, 2022, 44(1): 132-145. DOI: 10.12171/j.1000-1522.20210341
    [6]Liu Fangni, Yin Hao, Zhou Xu. Numerical simulation study on the influence of greening between buildings on sunlight conditions of building in residential area[J]. Journal of Beijing Forestry University, 2020, 42(12): 101-114. DOI: 10.12171/j.1000-1522.20200039
    [7]Ou Zina, Zhang Houjiang, Guan Cheng. Numerical simulation of the safety influence of defects on Qijia-beams of ancient timber building[J]. Journal of Beijing Forestry University, 2020, 42(4): 142-154. DOI: 10.12171/j.1000-1522.20190328
    [8]LI Yan-jie, XU Chen, LU Yuan-jia, ZHAO Dong. Finite element analysis and experiments on the drill of earth auger[J]. Journal of Beijing Forestry University, 2013, 35(2): 112-117.
    [9]HAO Yan-hua, ZHANG Xiang-xue, DING Xiao-kang, LIU Jiao. Analysis and measurement of ultrasonic acoustic emissions from the cavitation in xylem sap.[J]. Journal of Beijing Forestry University, 2012, 34(3): 36-40.
    [10]YANG Xue, CHEN Guang-yuan, FENG Li-ning, LI Jian-rong. Investigation of airflow uniformity at air-exchange device in drying kiln by numerical simulation[J]. Journal of Beijing Forestry University, 2011, 33(4): 113-117.
  • Cited by

    Periodical cited type(7)

    1. 高斯远,曹广超,刁二龙,何启欣,程梦园,邱巡巡,程国,赵美亮. 盛行风作用下柴木达盆地典型多花柽柳灌丛资源岛特征. 水土保持通报. 2022(04): 293-300 .
    2. 董正武,李生宇,毛东雷,雷加强. 古尔班通古特沙漠西南缘柽柳沙包土壤粒度分布特征. 水土保持学报. 2021(04): 64-72+79 .
    3. 王永兵,李亚萍. 古尔班通古特沙漠南缘梭梭固沙林土壤粒度的分异规律. 水土保持通报. 2020(03): 75-80 .
    4. 杨异婷. 坡度及旅游干扰对土壤粒度特征的影响. 绿色科技. 2019(02): 12-16 .
    5. 张帅,丁国栋,高广磊,赵媛媛,于明含,包岩峰,王春媛. 风沙区公路防积沙的新型防护栏研究. 北京林业大学学报. 2018(02): 90-97 . 本站查看
    6. 谭凤翥,王雪芹,王海峰,徐俊荣,袁鑫鑫. 柽柳灌丛沙堆及丘间地蚀积分布随背景植被变化的风洞实验. 干旱区地理. 2018(01): 56-65 .
    7. 安志山,张克存,谭立海,蔡迪文,张余. 论沙漠-绿洲过渡带的风沙防护效应. 干旱区研究. 2017(05): 1196-1202 .

    Other cited types(7)

Catalog

    Article views (324) PDF downloads (41) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return