Citation: | Bu Wensheng, Ma Yaohua, Liu Hongbing, Zhang Cancan, Li Yuxin, Zeng Shiqi, Yang Shiyun. Effects of mycorrhizal types and shade tolerance of tree species on carbon storage of standing dead branches[J]. Journal of Beijing Forestry University, 2022, 44(10): 85-92. DOI: 10.12171/j.1000-1522.20220350 |
[1] |
Naeem S, Duffy J E, Zavaleta E. The functions of biological diversity in an age of extinction[J]. Science, 2012, 336: 1401−1406. doi: 10.1126/science.1215855
|
[2] |
Pan Y D, Richard A B, Fang J Y, et al. A large and persistent carbon sink in the world’s forests[J]. Science, 2011, 333: 988−993. doi: 10.1126/science.1201609
|
[3] |
Onodera K, Sawako T. Do larger snags stand longer? Snag longevity in mixed conifer-hardwood forests in Hokkaido, Japan[J]. Annals of Forest Science, 2015, 72: 621−629. doi: 10.1007/s13595-015-0478-5
|
[4] |
Pan Y D, Richard A B, Oliver L P, et al. The structure, distribution, and biomass of the world’s forests[J]. Annual Review of Ecology, Evolution, and Systematics, 2013, 44: 593−622. doi: 10.1146/annurev-ecolsys-110512-135914
|
[5] |
Loreau M, Andy H. Partitioning selection and complementarity in biodiversity experiments[J]. Nature, 2001, 412: 72−76. doi: 10.1038/35083573
|
[6] |
Tilman D, Isbell F, Cowles J M. Biodiversity and ecosystem functioning[J]. Annual Review of Ecology, Evolution, and Systematics, 2014, 45: 471−493. doi: 10.1146/annurev-ecolsys-120213-091917
|
[7] |
Valladares F, Niinemets Ü. Shade tolerance, a key plant feature of complex nature and consequences[J]. Annual Review of Ecology, Evolution, and Systematics, 2008, 39: 237−257.
|
[8] |
van der Heijden M G A, Martin F M, Selosse M A, et al. Mycorrhizal ecology and evolution: the past, the present, and the future[J]. New Phytologist, 2015, 205: 1406−1423. doi: 10.1111/nph.13288
|
[9] |
Feng J, Zhu K, Cadotte M W, et al. Tree mycorrhizal type mediates the strength of negative density dependence in temperate forests[J]. Journal of Ecology, 2020, 108: 2601−2610. doi: 10.1111/1365-2745.13413
|
[10] |
颉洪涛, 虞木奎, 成向荣. 光照强度变化对 5 种耐阴植物氮磷养分含量, 分配以及限制状况的影响[J]. 植物生态学报, 2017, 41(5): 559−569. doi: 10.17521/cjpe.2016.0248
Xie H T, Yu M K, Cheng X R. Effects of light intensity variation on nitrogen and phosphorus contents, allocation and limitation in five shade-enduring plants[J]. Chinese Journal of Plant Ecology, 2017, 41(5): 559−569. doi: 10.17521/cjpe.2016.0248
|
[11] |
马钦洪, 李艳朋, 练琚愉, 等. 鼎湖山南亚热带常绿阔叶林不同树种存活对邻体组成的响应差异[J]. 生物多样性, 2018, 26(6): 535−544. doi: 10.17520/biods.2018056
Ma Q H, Li Y P, Lian J Y, et al. Difference in survival response of tree species to neighborhood crowding in a lower subtropical evergreen broad-leaved forest of Dinghushan[J]. Biodiversity Science, 2018, 26(6): 535−544. doi: 10.17520/biods.2018056
|
[12] |
Canham C D, Finzi A C, Pacala S W, et al. Causes and consequences of resource heterogeneity in forests: interspecific variation in light transmission by canopy trees[J]. Canadian Journal of Forest Research, 1994, 24: 337−349. doi: 10.1139/x94-046
|
[13] |
Gravel D, Canham C D, Beaudet M, et al. Shade tolerance, canopy gaps and mechanisms of coexistence of forest trees[J]. Oikos, 2010, 119: 475−484. doi: 10.1111/j.1600-0706.2009.17441.x
|
[14] |
Givnish T J. Adaptation to sun and shade: a whole-plant perspective[J]. Functional Plant Biology, 1988, 15: 63−92. doi: 10.1071/PP9880063
|
[15] |
Reich P B, Wright I J, Cavender-Bares J, et al. The evolution of plant functional variation: traits, spectra, and strategies[J]. International Journal of Plant Sciences, 2003, 164: S143−S164. doi: 10.1086/374368
|
[16] |
Aussenac R, Bergeron Y, Gravel D, et al. Interactions among trees: a key element in the stabilising effect of species diversity on forest growth[J]. Functional Ecology, 2019, 33: 360−367. doi: 10.1111/1365-2435.13257
|
[17] |
Bongers F J, Schmid B, Sun Z, et al. Growth–trait relationships in subtropical forest are stronger at higher diversity[J]. Journal of Ecology, 2020, 108: 256−266. doi: 10.1111/1365-2745.13242
|
[18] |
Wang W, Lei X, Ma Z, et al. Positive relationship between aboveground carbon stocks and structural diversity in spruce-dominated forest stands in New Brunswick, Canada[J]. Forest Science, 2011, 57: 506−515.
|
[19] |
Kraft N J B, Valencia R, Ackerly D D, et al. Functional traits and niche-based tree community assembly in an Amazonian forest[J]. Science, 2008, 322: 580−582. doi: 10.1126/science.1160662
|
[20] |
Ali A, Yan E R, Chen H Y H, et al. Stand structural diversity rather than species diversity enhances aboveground carbon storage in secondary subtropical forests in Eastern China[J]. Biogeosciences, 2016, 13: 4627−4635. doi: 10.5194/bg-13-4627-2016
|
[21] |
Dănescu A, Albrecht A T, Bauhus J. Structural diversity promotes productivity of mixed, uneven-aged forests in southwestern Germany[J]. Oecologia, 2016, 182: 319−333. doi: 10.1007/s00442-016-3623-4
|
[22] |
Zhang Y, Chen H Y H. Individual size inequality links forest diversity and above-ground biomass[J]. Journal of Ecology, 2015, 103: 1245−1252. doi: 10.1111/1365-2745.12425
|
[23] |
Yuan Z Q, Wang S P, Ali A, et al. Aboveground carbon storage is driven by functional trait composition and stand structural attributes rather than biodiversity in temperate mixed forests recovering from disturbances[J]. Annals of Forest Science, 2018, 75: 1−13. doi: 10.1007/s13595-017-0678-2
|
[24] |
Binkley D, Stape J L, Bauerle W L, et al. Explaining growth of individual trees: light interception and efficiency of light use by Eucalyptus at four sites in Brazil[J]. Forest Ecology and Management, 2010, 259: 1704−1713. doi: 10.1016/j.foreco.2009.05.037
|
[25] |
Soares A A V, Leite H G, Cruz J P. Development of stand structural heterogeneity and growth dominance in thinned Eucalyptus stands in Brazil[J]. Forest Ecology and Management, 2017, 384: 339−346. doi: 10.1016/j.foreco.2016.11.010
|
[26] |
Clark J S. Individuals and the variation needed for high species diversity in forest trees[J]. Science, 2010, 327: 1129−1132.
|
[27] |
Ma K P. Studies on biodiversity and ecosystem function via manipulation experi-ments[J]. Biodiversity Science, 2013, 21: 247. doi: 10.3724/SP.J.1003.2013.02132
|
[28] |
Bruelheide H, Nadrowski K, Assmann T, et al. Designing forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical China[J]. Methods in Ecology and Evolution, 2014, 5(1): 74−89. doi: 10.1111/2041-210X.12126
|
[29] |
Lung M, Espira A. The influence of stand variables and human use on biomass and carbon stocks of a transitional African forest: implications for forest carbon projects[J]. Forest Ecology and Management, 2015, 351: 36−46. doi: 10.1016/j.foreco.2015.04.032
|
[30] |
Lai J S, Zou Y, Zhang J L, et al. Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca. hp R package[J]. Methods in Ecology and Evolution, 2022, 13: 782−788. doi: 10.1111/2041-210X.13800
|
[31] |
欧阳园丽, 张参参, 林小凡, 等. 中国亚热带不同菌根树种的根叶形态学性状特征与生长差异: 以江西新岗山为例[J]. 生物多样性, 2021, 29: 746−758. doi: 10.17520/biods.2020368
Ouyang Y L, Zhang C C, Lin X F, et al. Growth differences and characteristics of root and leaf morphological traits for different mycorrhizal tree species in the subtropical China: a case study of Xingangshan, Jiangxi Province[J]. Biodiversity Science, 2021, 29: 746−758. doi: 10.17520/biods.2020368
|
[32] |
黄小辉, 陈道静, 冯大兰. 不同基质条件下丛枝菌根真菌对桑树生长的影响[J]. 南京林业大学学报(自然科学版), 2019, 62(3): 9−16.
Huang X H, Chen D J, Feng D L. The effects of arbuscular mycorrhiza fungi on the growth of mulberry in different nursery substrates[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2019, 62(3): 9−16.
|
[33] |
公绪云, 饶兴权, 周丽霞, 等. 尾叶桉林下5种植物的耐阴性、生物量及其个体消长[J]. 生态学报, 2018, 38(3): 1124−1133.
Gong X Y, Rao X Q, Zhou L X, et al. Dynamics of shade tolerance, biomass, and individual growth of five understory plant species in Eucalyptus urophylla plantations[J]. Acta Ecologica Sinica, 2018, 38(3): 1124−1133.
|
[34] |
Averill C, Turner B L, Finzi A C. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage[J]. Nature, 2014, 505: 543−545. doi: 10.1038/nature12901
|
[35] |
Yan G, Bongers F J, Trogisch S, et al. Climate and mycorrhizae mediate the relationship of tree species diversity and carbon stocks in subtropical forests[J]. Journal of Ecology, 2022, 00: 1−13.
|
[36] |
Chen A. Understanding the physiology and ecology of shade tolerance [D]. Princeton: Princeton University, 2009.
|
[37] |
Keeling H C, Baker T R, Martinez R V, et al. Contrasting patterns of diameter and biomass increment across tree functional groups in Amazonian forests[J]. Oecologia, 2008, 158: 521−534. doi: 10.1007/s00442-008-1161-4
|
[38] |
Ekblad A, Wallander H, Godbold D L, et al. The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils: role in carbon cycling[J]. Plant and Soil, 2013, 6: 1−27.
|