• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Zang Hao, Huang Jincheng, Liu Hongsheng, Ouyang Xunzhi, Jiang Jun, Ning Jinkui. Optimal rotation period of carbon sequestration wood multifunctional management in Chinese fir plantation[J]. Journal of Beijing Forestry University, 2022, 44(10): 120-128. DOI: 10.12171/j.1000-1522.20220399
Citation: Zang Hao, Huang Jincheng, Liu Hongsheng, Ouyang Xunzhi, Jiang Jun, Ning Jinkui. Optimal rotation period of carbon sequestration wood multifunctional management in Chinese fir plantation[J]. Journal of Beijing Forestry University, 2022, 44(10): 120-128. DOI: 10.12171/j.1000-1522.20220399

Optimal rotation period of carbon sequestration wood multifunctional management in Chinese fir plantation

More Information
  • Received Date: September 29, 2022
  • Revised Date: October 10, 2022
  • Accepted Date: October 15, 2022
  • Available Online: October 18, 2022
  • Published Date: October 24, 2022
  •   Objective  The paper aims to analyze the change of optimal rotation and benefits under different conditions in consideration of carbon sequestration and timber for Chinese fir plantation, and provide a scientific basis for multi-functional management and decision.
      Method  This study focused on Chinese fir plantation in Chongyi County and conducted in remeasurement data of 31 permanent plots, Jiangxi Province of eastern China. Based on Faustmann-Hartman model, three different scenarios were designed in this study. Scenario 1 only considered timber benefits. Scenario 2 added additional aboveground biomass pool, and Scenario 3 further considered the impact of dead organic matter pool. For each scenario, the effects of different carbon prices, rates and site index on the optimal rotation and land expected value were analyzed.
      Result  Under the baseline condition (carbon price: 77 CNY/t; rate: 5%; site index: 15 m), the land expected value showed a trend of first increasing and then decreasing with the increasing age. The optimal rotation for scenario 1 and 2 was 21 years, and for scenario was 20 years. Compared with scenario 1, a 23% increase of the land expected value was found for scenario 2 and a 35% increase for scenario 3. With the carbon price increasing, the optimal rotation decreased and the land expected value increased. For the same carbon price, the difference of optimal rotation among three scenarios was up to 4 years, and the difference increased with carbon price increased. With the rate increasing, the optimal rotation and land expected value showed a decreasing trend. When rate was 7%, the land expected value turned to be down to less than 10% for all three scenarios and negative land expected value was found for scenario 1. With the site index increased, the optimal rotation decreased and the land expected value increased.
      Conclusion  Under the present Chinese fir management environment, benefits of carbon sequestration do not have a significant effect on optimal rotation. However, an impact on land expected value exists. It is beneficial to enhance the enthusiasm of multi-functional management for Chinese fir plantation. Carbon price, rate and site quality can significantly affect the optimal rotation and land expected value.
  • [1]
    Pan Y, Birdsey R A, Fang J, et al. A large and persistent carbon sink in the world’s forests[J]. Science, 2011, 333: 988−993. doi: 10.1126/science.1201609
    [2]
    Harris N L, Gibbs D A, Baccini A, et al. Global maps of twenty-first century forest carbon fluxes[J]. Nature Climate Change, 2021, 11(3): 234−240. doi: 10.1038/s41558-020-00976-6
    [3]
    国家林业和草原局. 中国森林资源报告(2014—2018)[M]. 北京: 中国林业出版社, 2019.

    State Forestry Administration. Chinese forest resources report (2014−2018)[M]. Beijing: China Forestry Publishing House, 2019.
    [4]
    董灵波, 蔺雪莹, 张一帆, 等. 兼顾碳汇和木材生产的长白落叶松人工林最优轮伐期[J]. 林业科学, 2022, 58(5): 18−30. doi: 10.11707/j.1001-7488.20220503

    Dong L B, Lin X Y, Zhang Y F, et al. Optimal rotation of Larix olgensis plantation in considering carbon sequestration and timber production[J]. Scientia Silvae Sinicae, 2022, 58(5): 18−30. doi: 10.11707/j.1001-7488.20220503
    [5]
    简盖元, 冯亮明, 刘伟平. 基于碳汇价值的森林最优轮伐期分析[J]. 林业经济问题, 2011, 31(1): 70−75. doi: 10.3969/j.issn.1005-9709.2011.01.016

    Jian G Y, Feng L M, Liu W P. Analysis of forest optimal rotation which base on the value of carbon sequestration[J]. Issues of Forestry Economics, 2011, 31(1): 70−75. doi: 10.3969/j.issn.1005-9709.2011.01.016
    [6]
    林卓, 吴承祯, 洪伟, 等. 杉木人工林碳汇木材复合经济收益分析及最优轮伐期确定: 基于时间序列预测模型[J]. 林业科学, 2016, 52(10): 134−145. doi: 10.11707/j.1001-7488.20161017

    Lin Z, Wu C Z, Hong W, et al. Economic benefits analysis of carbon sequestration and timber and determination of optimal rotation period for a Cunninghamia lanceolata plantation based on time series model[J]. Scientia Silvae Sinicae, 2016, 52(10): 134−145. doi: 10.11707/j.1001-7488.20161017
    [7]
    余智涵, 宁卓, 杨红强. 随机价格下杉木人工林的碳汇收益及最优轮伐期确定[J]. 自然资源学报, 2022, 37(3): 753−768.

    Yu Z H, Ning Z, Yang H Q. Carbon sequestration benefit and optimal rotation period determination of Cunninghamia lanceolata plantation under stochastic price[J]. Journal of Natural Resources, 2022, 37(3): 753−768.
    [8]
    Gong Z, O’Hara K L, Li W. Optimal forest rotation periods: integrating timber production and carbon sequestration benefits in Pinus tabulaeformis plantations on the Loess Plateau, P. R. China[J]. Journal of Sustainable Forestry, 2019, 38(6): 591−613. doi: 10.1080/10549811.2019.1598442
    [9]
    Guthrie G, Kumareswaran D. Carbon subsidies, taxes and optimal forest management[J]. Environmental and Resource Economics, 2009, 43(2): 275−293. doi: 10.1007/s10640-008-9238-4
    [10]
    薛蓓蓓, 田国双. 基于碳汇木材复合经营目标的综合效益及影响因素分析[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 205−212.

    Xue B B, Tian G S. Analysis of comprehensive benefits and influencing factors based on the combined economic value of carbon sequestration and timber benefits[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2021, 45(2): 205−212.
    [11]
    Méndez M A, Rico M J. Heuristic forest planning model for optimizing timber production and carbon sequestration in teak plantations[J]. iForest-Biogeosciences and Forestry, 2017, 10(1): 430−439.
    [12]
    van Kooten G C, Binkley C S, Delcourt G. Effect of carbon taxes and subsidies on optimal forest rotation age and supply of carbon services[J]. American Journal of Agricultural Economics, 1995, 77(2): 365−374. doi: 10.2307/1243546
    [13]
    Asante P, Armstrong G W, Adamowicz W L. Carbon sequestration and the optimal forest harvest decision: a dynamic programming approach considering biomass and dead organic matter[J]. Journal of Forest Economics, 2011, 17(1): 3−17. doi: 10.1016/j.jfe.2010.07.001
    [14]
    Diaz-Balteiro L, Rodriguez L C E. Optimal rotations on Eucalyptus plantations including carbon sequestration: a comparison of results in Brazil and Spain[J]. Forest Ecology and Management, 2006, 229(1): 247−258.
    [15]
    Thomson T A. Optimal forest rotation when stumpage prices follow a diffusion process[J]. Land Economics, 1992, 68(3): 329−342. doi: 10.2307/3146380
    [16]
    沈月琴, 王枫, 张耀启, 等. 中国南方杉木森林碳汇供给的经济分析[J]. 林业科学, 2013, 49(9): 140−147.

    Shen Y Q, Wang F, Zhang Y Q, et al. Economic analysis of Chinese fir forest carbon sequestration supply in south China[J]. Scientia Silvae Sinicae, 2013, 49(9): 140−147.
    [17]
    Asante P, Armstrong G W. Optimal forest harvest age considering carbon sequestration in multiple carbon pools: a comparative statics analysis[J]. Journal of Forest Economics, 2012, 18(2): 145−156. doi: 10.1016/j.jfe.2011.12.002
    [18]
    Faustmann M. Calculation of the value which forest land and immature stands possess for forestry[J]. Journal of Forest Economics, 1849, 1: 7−44.
    [19]
    Hartman R. The harvesting decision when a standing forest has value[J]. Economic Inquiry, 1976, 14(1): 52−58. doi: 10.1111/j.1465-7295.1976.tb00377.x
    [20]
    刘琪璟. 中国立木材积表[M]. 北京: 中国林业出版社, 2017.

    Liu Q J. Tree volume tables of China[M]. Beijing: China Forestry Publishing House, 2017.
    [21]
    国家林业局. 立木生物量模型及碳计量参数−杉木: LY/T 2264—2014 [S]. 北京: 中国标准出版社, 2014.

    State Forestry Administration. Tree biomass models and related parameters to carbon accounting for Cunninghamia lanceolata: LY/T 2264−2014 [S]. Beijing: Standards Press of China, 2014.
    [22]
    黄宰胜, 陈钦. 基于造林成本法的林业碳汇成本收益影响因素分析[J]. 资源科学, 2016, 38(3): 485−492.

    Huang Z S, Chen Q. Influencing factors analysis of forestry carbon sequestration cost-benefit based on afforestation cost methods[J]. Resources Science, 2016, 38(3): 485−492.
    [23]
    徐传洪. 不同林龄序列杉木人工林凋落物特征研究[D]. 长沙: 中南林业科技大学, 2020.

    Xu C H. Study on litter characteristics of Chinese fir plantation in different stand ages[D]. Changsha: Central South University of Forestry and Technology, 2020.
    [24]
    周涛, 史培军, 贾根锁, 等. 中国森林生态系统碳周转时间的空间格局[J]. 中国科学:地球科学, 2010, 40(5): 632−644.

    Zhou T, Shi P J, Jia G S, et al. Spatial patterns of ecosystem carbon residence time in Chinese forests[J]. Science China: Earth Sciences, 2010, 40(5): 632−644.
    [25]
    蔡兆炜. 福建杉木人工林生物量模型研究[D]. 北京: 北京林业大学, 2014.

    Cai Z W. A Study on biomass models of Cunninghamia lanceolata plantation in Fujian[D]. Beijing: Beijing Forestry University, 2014.
    [26]
    周伟, 高岚. 森林碳汇收益的实证分析: 以广东省杉木林为例[J]. 科技管理研究, 2015, 35(2): 219−223. doi: 10.3969/j.issn.1000-7695.2015.02.043

    Zhou W, Gao L. Optimal forest harvest age considering carbon sequestration in multiple carbon pools[J]. Science and Technology Management Research, 2015, 35(2): 219−223. doi: 10.3969/j.issn.1000-7695.2015.02.043
    [27]
    黄宰胜, 陈钦. 不同情境下桉树碳汇林最佳轮伐期分析[J]. 长江流域资源与环境, 2016, 25(增刊1): 25−31.

    Huang Z S, Chen Q. Analysis of the optimal rotation of eucalypt carbon sequestration forests under various scenarios[J]. Resources and Environment in the Yangtze Basin, 2016, 25(Suppl.1): 25−31.
    [28]
    朱臻, 沈月琴, 张耀启, 等. 碳汇经营目标下的林地期望价值变化及碳供给: 基于杉木裸地造林假设研究[J]. 林业科学, 2012, 48(11): 112−116. doi: 10.11707/j.1001-7488.20121118

    Zhu Z, Shen Y Q, Zhang Y Q, et al. Change of forestland expected value and carbon supply in the objective of carbon sequestration: based on the Chinese fir plantation in bared land[J]. Scientia Silvae Sinicae, 2012, 48(11): 112−116. doi: 10.11707/j.1001-7488.20121118
    [29]
    刘俊昌. 林业经济学[M]. 2版. 北京: 中国农业出版社, 2018.

    Liu J C. Forest economics[M]. 2nd ed. Beijing: China Agriculture Press, 2018.
    [30]
    王周绪, 姜全飞. 中国林业行业基准贴现率研究[J]. 林业经济, 2006(6): 39−44. doi: 10.13843/j.cnki.lyjj.2006.06.018

    Wang Z X, Jiang Q F. China forestry basic rate of discount[J]. Forestry Economics, 2006(6): 39−44. doi: 10.13843/j.cnki.lyjj.2006.06.018
    [31]
    Zhou W, Gao L. The impact of carbon trade on the management of short-rotation forest plantations[J]. Forest Policy and Economics, 2016, 62: 30−35. doi: 10.1016/j.forpol.2015.10.008
    [32]
    刘林, 张旭, 余素君, 等. 湿地松材脂兼用林最优轮伐期的经济分析: 以江西省景德镇市枫树山林场为例.[J]. 林业科学, 2022, 58(4): 62−73.

    Liu L, Zhang X, Yu S J, et al. Economic analysis on optimal rotation period of slash pine plantations used for timber and resin: a case study in a state-owned Fengshushan Forestry Farm of Jingdezhen, Jiangxi Province[J]. Scientia Silvae Sinicae, 2022, 58(4): 62−73.
  • Related Articles

    [1]Zou Xuge, Wang Yin, Wang Jianming, Qu Mengjun, Zhu Weilin, Zhao Hang, Si Jianhua, Li Jingwen. Coordination and trade-off of leaf functional traits in Populus euphratica and their response to tree age and soil factors[J]. Journal of Beijing Forestry University, 2024, 46(5): 82-92. DOI: 10.12171/j.1000-1522.20220522
    [2]Huang Qingyang, Xie Lihong, Cao Hongjie, Yang Fan, Ni Hongwei. Variation characteristics of leaf functional traits of Populus davidiana in Wudalianchi Volcano, northeastern China[J]. Journal of Beijing Forestry University, 2021, 43(2): 81-89. DOI: 10.12171/j.1000-1522.20200089
    [3]Li Jinhang, Zhu Jiyou, Catherine Mhae B. Jandug, Zhao Kai, Xu Chengyang. Relationship between leaf functional trait variation of Cotinus coggygria seedling and location geographical-climatic factors under drought stress[J]. Journal of Beijing Forestry University, 2020, 42(2): 68-78. DOI: 10.12171/j.1000-1522.20190079
    [4]Zhong Yueming, Wang Wenjuan, Wang Jianming, Wang Yuchen, Li Jingwen, Yuan Dong, Fan Yunyun, Wei Xincheng. Leaf functional traits of oasis plants in extremely arid areas and its response to soil water and salt factors[J]. Journal of Beijing Forestry University, 2019, 41(10): 20-29. DOI: 10.13332/j.1000-1522.20190128
    [5]Wu Dongshan, Yang Zhangqi, Huang Yongli. Analysis and evaluation of resin productivity and resin component among different half sibling families of Pinus massoniana[J]. Journal of Beijing Forestry University, 2019, 41(2): 53-61. DOI: 10.13332/j.1000-1522.20170377
    [6]CHEN Wu, KONG De-cang, CUI Yan-hong, CAO Ming, PANG Xiao-ming, LI Ying-yue. Phenotypic genetic diversity of a core collection of Ziziphus jujuba and correlation analysis of dehiscent characters[J]. Journal of Beijing Forestry University, 2017, 39(6): 78-84. DOI: 10.13332/j.1000-1522.20170024
    [7]ZHAO Wen-xia, ZOU Bin, ZHENG Jing-ming, LUO Jiu-fu. Correlations between leaf, stem and root functional traits of common tree species in an evergreen broad-leaved forest[J]. Journal of Beijing Forestry University, 2016, 38(6): 35-41. DOI: 10.13332/j.1000-1522.20160087
    [8]LIU Xi-zhen, FENG Huan-ying, CAI Cun-ju, FAN Shao-hui, LIU Guang-lu. Response of leaf functional traits of Moso bamboo during the invading process into the broad-leaved forest[J]. Journal of Beijing Forestry University, 2015, 37(8): 8-10. DOI: 10.13332/j.1000-1522.20150157
    [9]WAN Hong-mei, LI Xia, DONG Dao-rui, ZHAO Zhao, TANG Jin. Correlation analysis and characteristics of measuring factors for Populus euphratica after drought stress water delivery.[J]. Journal of Beijing Forestry University, 2012, 34(2): 34-38.
    [10]MO Chang-ming, MA Xiao-jun, , QI Li-wang, BAI Long-hua, SHI Lei, FENG Shi-xin. Genetic variation, correlation and path analysis of Siraitia grosvenorii germplasm characters.[J]. Journal of Beijing Forestry University, 2008, 30(4): 121-125.
  • Cited by

    Periodical cited type(3)

    1. 杨钺戈,李跃,张慧,阮明菊,马丽宣,曾千春. 农杆菌介导法获得辣木PKM-1转双价抗虫基因(sck+Cry1-Ac)愈伤组织. 云南农业大学学报(自然科学). 2023(01): 27-33 .
    2. 王玉娟,罗成凤,幸伟年,李进,占志勇,何小三. 中国枫香×北美枫香杂交子代生长表现及初步评价. 南方林业科学. 2022(06): 15-18 .
    3. 韩海萍. 枫香多目标育种及栽培技术. 乡村科技. 2021(29): 87-89 .

    Other cited types(3)

Catalog

    Article views (673) PDF downloads (120) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return