• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Liu Jiaqi, Zhao Lijuan, Liu Lei, Huang Ruifen, Han Youzhi, Zhang Zhiwei, Cui Shaopeng, Gao Ruihe. Physiological adaptation mechanism of 4-age wintering larvae of Monochamus alternatus (Coleoptera: Cerambycidae) in response to low temperature stress[J]. Journal of Beijing Forestry University, 2024, 46(4): 74-83. DOI: 10.12171/j.1000-1522.20220438
Citation: Liu Jiaqi, Zhao Lijuan, Liu Lei, Huang Ruifen, Han Youzhi, Zhang Zhiwei, Cui Shaopeng, Gao Ruihe. Physiological adaptation mechanism of 4-age wintering larvae of Monochamus alternatus (Coleoptera: Cerambycidae) in response to low temperature stress[J]. Journal of Beijing Forestry University, 2024, 46(4): 74-83. DOI: 10.12171/j.1000-1522.20220438

Physiological adaptation mechanism of 4-age wintering larvae of Monochamus alternatus (Coleoptera: Cerambycidae) in response to low temperature stress

More Information
  • Received Date: October 31, 2022
  • Revised Date: May 31, 2023
  • Accepted Date: August 10, 2023
  • Available Online: August 15, 2023
  • Objective 

    This paper aims to determine the physiological adaptation mechanism of the 4-age wintering larva of M. alternatus to low temperature stress.

    Method 

    The 4-age wintering larva of M. alternatus were collected from Dexing, Jiangxi Province of eastern China in mid-March of the 2021, and seven temperature gradients of 25 ℃ (control), 4, 0, −5, −10, −15 and −20 ℃ and three time gradients of 30 min, 1 h and 3 h were set, the cold tolerance, content of cold-resistant substances, activity of antioxidant enzymes and the damage of midgut under low temperature stress were determined.

    Result 

    (1) Near the supercooling point (−9.27 ± 0.90) ℃, the 50% lethal time was about 1.9 h (114.97 min), and the 99% lethal time was about 2.8 d (4 061.86 min). Under low temperature stress below the supercooling point (−15 ℃), the lethal time of 50% and 99% was about 1/4 of that under low temperature treatment of −10 ℃. (2) After low temperature stress treatment, the water content of the 4-age wintering larvae did not change significantly, the fat content and glycogen mass concentration were significantly decreased after 3 h at 0 ℃ (P < 0.05), and the sorbitol mass concentration was significantly increased after 1 h at −5 ℃ (P < 0.05), and significantly decreased after 1 h at −20 ℃ (P < 0.05). (3) After low temperature stress treatment, the activities of antioxidant enzymes (SOD, POD, CAT) were significantly increased (P < 0.05). (4) The midgut of the 4-age wintering larvae of M. alternatus was decomposed after −15 ℃ treatment for 3 h, and vacuoles appeared between cells. After −20 ℃ treatment for 3 h, the midgut cells were ruptured, and the cell vacuoles escaped and filled the whole intestinal cavity, and the vacuoles disappeared.

    Conclusion 

    This study clarified the physiological response of oxidative stress of the fourth instar overwintering larvae to low temperature stress, which could enrich and improve the study on cold tolerance mechanism of M. alternatus.

  • [1]
    杨宝君, 潘宏阳, 汤坚, 等. 松材线虫病[M]. 北京: 中国林业出版社, 2003: 48.

    Yang B J, Pan H Y, Tang J, et al. Bursaphelenchus xylophilus[M]. Beijing: China Forestry Publishing House, 2003: 48.
    [2]
    张执中, 田恒燕, 黄旭昌, 等. 森林昆虫学[M]. 北京: 农业出版社, 1959: 324.

    Zhang Z Z, Tian H Y, Huang X C, et al. Forest entomology[M]. Beijing: Agricultural Press, 1959: 324.
    [3]
    华立中. 中国天牛科昆虫名录[M]. 广州: 中山大学出版社, 1982: 96.

    Hua L Z. The checklist of cerambycidae in China[M]. Guangzhou: Sun Yat-Sen University Press, 1982: 96.
    [4]
    王志明, 皮忠庆, 候彬. 吉林省发现松墨天牛[J]. 中国森林病虫, 2006, 25(3): 35. doi: 10.3969/j.issn.1671-0886.2006.03.015

    Wang Z M, Pi Z Q, Hou B. Discovery of Monochamus alternatus in Jilin Province[J]. Forest Pest and Disease, 2006, 25(3): 35. doi: 10.3969/j.issn.1671-0886.2006.03.015
    [5]
    姜生伟, 吴昊, 李德斌, 等. 我国东北地区松材线虫灾害特征分析[J]. 中国森林病虫, 2022, 41(4): 9−15. doi: 10.19688/j.cnki.issn1671-0886.20220012

    Jiang S W, Wu H, Li D B, et al. Analysis on disaster characteristics of pine wood nematode in Northeast China[J]. Forest Pest and Disease, 2022, 41(4): 9−15. doi: 10.19688/j.cnki.issn1671-0886.20220012
    [6]
    Overgaard J, Gerber L, Andersen M K. Osmoregulatory capacity at low temperature is critical for insect cold tolerance[J]. Current Opinion in Insect Science, 2021, 47: 38−45. doi: 10.1016/j.cois.2021.02.015
    [7]
    Cubillos C, Cáceres J C, Villablanca C, et al. Cold tolerance mechanisms of two arthropods from the Andean Range of Central Chile: Agathemera crassa (Insecta: Agathemeridae) and Euathlus condorito (Arachnida: Theraphosidae)[J]. Journal of Thermal Biology, 2018, 74: 133−139. doi: 10.1016/j.jtherbio.2018.03.018
    [8]
    Cdonald J R, Head J, Bale J S, et al. Cold tolerance, overwintering and establishment potential of Thrips palmi[J]. Physiological Entomology, 2000, 25(6): 159−166.
    [9]
    景晓红, 康乐. 昆虫耐寒性研究[J]. 生态学报, 2002, 22(12): 2202−2207. doi: 10.3321/j.issn:1000-0933.2002.12.026

    Jing X H, Kang L. Research progress in insect cold hardines[J]. Acta Ecologica Sinica, 2002, 22(12): 2202−2207. doi: 10.3321/j.issn:1000-0933.2002.12.026
    [10]
    Sinclair B J, Alvarado L E C, Ferguson L V. An invitation to measure insect cold tolerance: methods, approaches, and workflow[J]. Journal of Thermal Biology, 2015, 53: 180−197. doi: 10.1016/j.jtherbio.2015.11.003
    [11]
    Jikumaru S, Togashi K. Temperature effects on the transmission of Bursaphelenchus xylophilus (Nemata: Aphelenchoididae) by Monochamus alternatus (Coleoptera: Cerambycidae)[J]. Journal of Nematology, 2000, 32(1): 110.
    [12]
    Salt R W. Principles of insect cold-hardiness[J]. Annual Review of Entomology, 1961, 6(1): 55−74. doi: 10.1146/annurev.en.06.010161.000415
    [13]
    Teets N M, Denlinger D L. Physiological mechanisms of seasonal and rapid cold-hardening in insects[J]. Physiological Entomology, 2013, 38(2): 105−116. doi: 10.1111/phen.12019
    [14]
    李鸿波. 入侵害虫西花蓟马对温度胁迫的响应[D]. 扬州: 扬州大学, 2013.

    Li H B. Response to thermal steress in westernflower therips, Fronkliniella occidetalls[D]. Yangzhou: Yangzhou University, 2013.
    [15]
    吴江林. 棕榈科植物入侵害虫枣椰扁潜甲对环境温度的适应性[D]. 福州: 福建农林大学, 2019.

    Wu J L. Adaptability to environmental temperature of invasive insect pest Wallacea dactyliferae on the palmaes[D]. Fuzhou: Fujian Agriculture and Forestry University, 2019.
    [16]
    Rahman I, MacNee W. Regulation of redox glutathione levels and gene transcription in lung inflammation: therapeutic approaches[J]. Free Radical Biology and Medicine, 2000, 28(9): 1405−1420. doi: 10.1016/S0891-5849(00)00215-X
    [17]
    刘井兰, 于建飞, 吴进才, 等. 昆虫活性氧代谢[J]. 昆虫知识, 2006, 43(6): 752−756.

    Liu J L, Yu J F, Wu J C, et al. Active oxygen metabolism in insects[J]. Chinese Bulletin of Entomology, 2006, 43(6): 752−756.
    [18]
    Fridovich I. Oxygen is toxic[J]. Bioscience, 1977, 27(7): 462−466. doi: 10.2307/1297527
    [19]
    张耀洲, 钱元骏. 关于高低温处理蚕对家蚕浓核病毒(DNV)敏感机制的研究[J]. 江苏蚕业, 1990(4): 1−4.

    Zhang Y Z, Qian Y J. The study of sensitivity mechanism of silkworm to densovirus (DNV) under high and low temperature treatment[J]. Jiangsu Sericulture, 1990(4): 1−4.
    [20]
    张青, 涂永勤, 刘怀, 等. 温度胁迫对小金蝠蛾幼虫抗氧化酶活性的影响[J]. 环境昆虫学报, 2016, 38(1): 47−53.

    Zhang Q, Tu Y Q, Liu H, et al. Effects of temperature stress on antioxidant enzymes in Hepialus xiaojinensis (Lepidoptera: Hepialidae) larva[J]. Journal of Environmental Entomology, 2016, 38(1): 47−53.
    [21]
    王娟. 华山松大小蠹幼虫耐寒生化与分子机制[D]. 杨凌: 西北农林科技大学, 2017.

    Wang J. Biochemicaland molecular mechanism of Chinese white pine beetlelarvae (Dendroctonus armandi) to cold tolerance[D]. Yangling: Northwest Agricultural and Forest University, 2017.
    [22]
    Fields P G, Fleurat-Lessard F, Lavenseau L, et al. The effect of cold acclimation and deacclimation on cold tolerance, trehalose and free amino acid levels in Sitophilus granarius and Cryptolestes ferrugineus (Coleoptera)[J]. Journal of Insect Physiology, 1998, 44(10): 955−965. doi: 10.1016/S0022-1910(98)00055-9
    [23]
    Michaud M R, Denlinger D L. Shifts in the carbohydrate, polyol, and amino acid pools during rapid cold-hardening and diapause-associated cold-hardening in flesh flies (Sarcophaga crassipalpis): a metabolomic comparison[J]. Journal of Comparative Physiology, 2007, 177(7): 753−763.
    [24]
    Overgaard J, Malmendal A, Sørensen J G, et al. Metabolomic profiling of rapid cold hardening and cold shock in Drosophila melanogaster[J]. Journal of Insect Physiology, 2007, 53(12): 1218−1232.
    [25]
    余培旺. 武夷山风景区松墨天牛种群动态的研究[J]. 武夷科学, 2008(24): 123−130.

    Yu P W. Study on the Population dynamics of Monochamus alternatus in Wuyishan Scenery Region[J]. Wuyi Science Journal, 2008(24): 123−130.
    [26]
    南俊科, 杨越翔, 张玲华, 等. 松墨天牛在秦巴林区不同寄主上的危害规律[J]. 环境昆虫学报, 2021, 43(6): 1376−1388.

    Nan J K, Yang Y X, Zhang L H, et al. The damage of Monochamus alternatus on different host pine species in Qinling-Daba Mountains[J]. Journal of Environmental Entomology, 2021, 43(6): 1376−1388.
    [27]
    孔维娜. 入侵种松材线虫的关键传媒−松墨天牛的耐寒性[D]. 太谷: 山西农业大学, 2005.

    Kong W N. Cold hardiness of Monochamus alternatus, as the key vector of invasive nematode, Bursaphelenchus xylophilus[D]. Taigu: Shanxi Agricultural University, 2005.
    [28]
    Ma R, Hao S, Tian J, et al. Seasonal variation in cold-hardiness of the Japanese pine sawyer Monochamus alternatus (Coleoptera: Cerambycidae)[J]. Environmental Entomology, 2006, 35(4): 881−886. doi: 10.1603/0046-225X-35.4.881
    [29]
    Tian J, Hao S G, Kong W N, et al. Cold tolerance and cold hardening strategy of the Japanese pine sawyer Monochamus alternatus (Coleoptera: Cerambycidae)[J]. Insect Science, 2008, 15(4): 307−316. doi: 10.1111/j.1744-7917.2008.00215.x
    [30]
    时鹏. 我国不同地理种群松墨天牛的低温耐受性及其适生区分布[D]. 北京: 北京林业大学, 2018.

    Shi P. Tolerance to temperature stress of Monochamus alternatus and its potential suitable distributions in China[D]. Beijing: Beijing Forest University, 2018.
    [31]
    陈俊贤, 周娇, 魏洪义, 等. 冷驯化对松墨天牛幼虫脂代谢的影响[J]. 昆虫学报, 2021, 64(12): 1433−1443.

    Chen J X, Zhou J, Wei H Y, et al. Effects of cold acclimation on lipid metabolism in Monochamus alternatus (Coleoptera: Cerambycidae) larvae[J]. Acta Entomologica Sinica, 2021, 64(12): 1433−1443.
    [32]
    Cai Z, Chen J, Cheng J, et al. Overexpression of three heat shock proteins protects Monochamus alternatus (Coleoptera: Cerambycidae) from thermal stress[J]. Journal of Insect Science, 2017, 17(6): 113.
    [33]
    李慧, 何玄玉, 陶蓉, 等. 松墨天牛小热激蛋白基因的克隆、表达谱及对温度胁迫的响应[J]. 昆虫学报, 2018, 61(7): 749−760.

    Li H, He X Y, Tao R, et al. cDNA cloning and expression profiling of small heat shock protein genesand their response to temperature stress in Monochamus alternatus (Coleoptera: Cerambycidae)[J]. Acta Entomologica Sinica, 2018, 61(7): 749−760.
    [34]
    Zhang B, Zhao L, Ning J, et al. miR-31-5p regulates cold acclimation of the wood-boring beetle Monochamus alternatus via ascaroside signaling[J]. BMC Biology, 2020, 18(1): 1−17. doi: 10.1186/s12915-019-0728-3
    [35]
    Li H, Li S, Chen J, et al. A heat shock 70 kDa protein MaltHSP70-2 contributes to thermal resistance in Monochamus alternatus (Coleoptera: Cerambycidae): quantification, localization, and functional analysis[J]. BMC Genomics, 2022, 23(1): 1−13. doi: 10.1186/s12864-021-08243-4
    [36]
    董亚新, 裴佳禾, 邵钰莹, 等. 红脂大小蠹幼虫和成虫耐寒能力及耐寒物质的研究[J]. 环境昆虫学报, 2021, 43(4): 978−985.

    Dong Y X, Pei J H, Shao Y Y, et al. Cold tolerance and cold tolerant substances of larva and adult of Dendroctonus valens LeConte[J]. Journal of Environmental Entomology, 2021, 43(4): 978−985.
    [37]
    邓彩萍, 闫喜中, 刘红霞, 等. 球孢白僵菌侵染光肩星天牛幼虫的扫描电镜及组织病理观察[J]. 林业科学, 2012, 48(3): 105−109.

    Deng C P, Yan X Z, Liu H X, et al. Pathological observation of Anoplophora glabripennis larva infected by Beauveria bassiana by using SEM and light microscope[J]. Scientia Silvae Sinicae, 2012, 48(3): 105−109.
    [38]
    Estay S A, Lima M, Bozinovic F. The role of temperature variability on insect performance and population dynamics in a warming world[J]. Oikos, 2014, 123(2): 131−140. doi: 10.1111/j.1600-0706.2013.00607.x
    [39]
    史彩华, 胡静荣, 李传仁, 等. 环境胁迫下昆虫的耐寒适应机制研究进展[J]. 植物保护, 2016, 42(6): 21−28.

    Shi C H, Hu J R, Li C R, et al. Research progress in the cold tolerance mechanism of insects under environmental stress[J]. Plant Protection, 2016, 42(6): 21−28.
    [40]
    冯宇倩. 光肩星天牛幼虫的耐寒性及其适应机制[D]. 北京: 北京林业大学, 2017.

    Feng Y Q. Cold hardiness and adaptive mechanism of the Anoplophora glabripennis larva[D]. Beijing: Beijing Forestry University, 2017.
    [41]
    冯宇倩, 李文博, 骆有庆, 等. 红缘天牛越冬幼虫耐寒性研究[J]. 西北农业学报, 2015, 24(12): 175−180.

    Feng Y Q, Li W B, Luo Y Q, et al. Cold-hardiness of overwintering Asias halodendri larvae[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2015, 24(12): 175−180.
    [42]
    李珏闻. 青杨脊虎天牛的温度胁迫耐受性及在中国的适生分布区[D]. 北京: 北京林业大学, 2014.

    Li Y W. Tolerance to temperature stresses of grey tiger longicorn beetle (Xylotrechus rusticus L.) and its potential range in China[D]. Beijing: Beijing Forestry University, 2014.
    [43]
    Bale J S. Insect cold hardiness: a matter of life and death[J]. European Journal of Entomology, 1996, 93(3): 369−382.
    [44]
    韩瑞东, 孙绪艮, 许永玉, 等. 赤松毛虫越冬幼虫生化物质变化与抗寒性的关系[J]. 生态学报, 2005, 25(6): 1352−1356.

    Han R D, Sun X G, Xu Y Y, et al. The biochemical mechanism of cold-hardiness in overwintering larva of Dendrolimus spectabilis Butler (Lepidoptera: Lasiocampidae)[J]. Acta Ecologica Sinica, 2005, 25(6): 1352−1356.
    [45]
    朱昱翰, 李庆, 杨刚, 等. 低温和光周期对西藏飞蝗体内物质的影响[J]. 应用生态学报, 2016, 27(2): 629−633.

    Zhu Y H, Li Q, Yang G, et al. Influence of low temperature and photoperiod on the substances in Locusta moigratoria tibetensis[J]. Chinese Journal of Applied Ecology, 2016, 27(2): 629−633.
    [46]
    李秀璋, 刘欣, 李玉玲. 温度对玉树蝠蛾幼虫糖代谢的影响[J]. 应用昆虫学报, 2021, 58(6): 1295−1304.

    Li X Z, Liu X, Li Y L. Effect of temperature on the glycometabolism of Hepialus yushuensis larvae[J]. Journal of Environmental Entomology, 2021, 58(6): 1295−1304.
    [47]
    Joanisse D R, Storey K B. Oxidative stress and antioxidants in stress and recovery of cold-hardy insects[J]. Insect Biochemistry and Molecular Biology, 1998, 28(1): 23−30. doi: 10.1016/S0965-1748(97)00070-2
    [48]
    付雪莲. 茶淡黄刺蛾生物学特性及在温度胁迫下抗氧化反应研究[D]. 雅安: 四川农业大学, 2017.

    Fu X L. Study on biological characteristics and antioxidant systems to temperature stress of Darna trima (Moore)[D]. Ya’an: Sichuan Agricultural University, 2017.
    [49]
    杨伟克, 唐芬芬, 刘增虎, 等. 高温和低温条件下琥珀蚕血淋巴SOD及CAT活性的变化[J]. 江苏农业科学, 2017, 45(1): 153−155.

    Yang W K, Tang F F, Liu Z H, et al. Changes in the activity of Antheraea assamensis hemolymph SOD and CAT under high and low temperature conditions[J]. Jiangsu Agricultural Sciences, 2017, 45(1): 153−155.
    [50]
    陈豪, 梁革梅, 邹朗云, 等. 昆虫抗寒性的研究进展[J]. 植物保护, 2010, 36(2): 18−24.

    Chen H, Liang G M, Zou L Y, et al. Research progresses in the cold hardiness of insects[J]. Plant Protection, 2010, 36(2): 18−24.
  • Related Articles

    [1]Wang Rongfang, Zhang Ziyan, Li Dehai. Effects of extraction methods on extraction components and antioxidant activity of Quercus mongolica shell[J]. Journal of Beijing Forestry University, 2022, 44(5): 150-160. DOI: 10.12171/j.1000-1522.20210352
    [2]Fu Qun, Kuai Bin, Li Lu, Liu Lei, Wang Mengli. Extraction technology of flavonoids from pine shell and its antioxidant activity[J]. Journal of Beijing Forestry University, 2020, 42(8): 141-149. DOI: 10.12171/j.1000-1522.20190452
    [3]Yao Kun, Lian Conglong, Wang Jingjing, Wang Houling, Liu Chao, Yin Weilun, Xia Xinli. PePEX11 functions in regulating antioxidant capacity of Arabidopsis thaliana under salt stress[J]. Journal of Beijing Forestry University, 2018, 40(5): 19-28. DOI: 10.13332/j.1000-1522.20180086
    [4]Zhang Yu-hong, Cheng Kai-shan, Gao Xin, Zhang Xi-guo, Liu Tong. Influence on antioxidants and alkaloid content of Phellodendron amurense seedlings grown under supplementary UV-B radiation[J]. Journal of Beijing Forestry University, 2018, 40(1): 27-36. DOI: 10.13332/j.1000-1522.20170201
    [5]ZHANG Ya-ting, LI De-hai, BAO Yi-hong. Antioxidant activity on the pigments from acorn shell[J]. Journal of Beijing Forestry University, 2017, 39(4): 94-100. DOI: 10.13332/j.1000-1522.20160281
    [6]WENG Yue-tai, XUE Yu, XU Shuo, ZHANG Guo-liang, LIU Yue, DI Xue-ying. Extraction of total flavonoids from Cronartium orientale aeciospores by response surface methodology and its antioxidant activity in vitro[J]. Journal of Beijing Forestry University, 2017, 39(3): 38-47. DOI: 10.13332/j.1000-1522.20160269
    [7]LIN Xia, ZHENG Jian, CHEN Qiu-xia, KONG Qiang, YE Yan-ling. Effects of NaCl stress on photosynthesis and antioxidant activity in Ficus concinna var. subsessilis[J]. Journal of Beijing Forestry University, 2011, 33(4): 70-74.
    [8]WANG Meng-chang, FAN Jun-feng, LIANG Jun, ZHOU Yong-xue, WANG Lei. Effects of canker pathogen on four antioxidase activities of poplar callus[J]. Journal of Beijing Forestry University, 2010, 32(2): 118-122.
    [9]SHI Zheng, SHI Shengqing, YAO Hongjun, ZHONG Chuanfei, GAO Rong-fu. Production of ROS and its antioxidant system in plant mitochondria. [J]. Journal of Beijing Forestry University, 2009, 31(1): 150-154.
    [10]WANG Rui-gang, CHEN Shao-liang, LIU Li-yuan, HAO Zhi-yong, WENG Hai-jiao, LI He, YANG Shuang, DUAN Shan. Genotypic differences in antioxidative ability and salt tolerance of three poplars under sact stress[J]. Journal of Beijing Forestry University, 2005, 27(3): 46-52.
  • Cited by

    Periodical cited type(2)

    1. 吴昊晟,武威,胡兴国,杨东海,吴蕴洋,杨玲. 红松全同胞家系子代早期生长评价及选择. 森林工程. 2024(05): 94-102 .
    2. 武威,吴昊晟,杨东海,孙素芹,李士成,林玲,杨玲. 不同种源西伯利亚红松生长性状分析与评价. 西北林学院学报. 2024(05): 126-134 .

    Other cited types(2)

Catalog

    Article views (500) PDF downloads (81) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return