• Scopus
  • Chinese Science Citation Database (CSCD)
  • A Guide to the Core Journal of China
  • CSTPCD
  • F5000 Frontrunner
  • RCCSE
Advanced search
Yao Kun, Lian Conglong, Wang Jingjing, Wang Houling, Liu Chao, Yin Weilun, Xia Xinli. PePEX11 functions in regulating antioxidant capacity of Arabidopsis thaliana under salt stress[J]. Journal of Beijing Forestry University, 2018, 40(5): 19-28. DOI: 10.13332/j.1000-1522.20180086
Citation: Yao Kun, Lian Conglong, Wang Jingjing, Wang Houling, Liu Chao, Yin Weilun, Xia Xinli. PePEX11 functions in regulating antioxidant capacity of Arabidopsis thaliana under salt stress[J]. Journal of Beijing Forestry University, 2018, 40(5): 19-28. DOI: 10.13332/j.1000-1522.20180086

PePEX11 functions in regulating antioxidant capacity of Arabidopsis thaliana under salt stress

More Information
  • Received Date: March 19, 2018
  • Revised Date: April 08, 2018
  • Published Date: April 30, 2018
  • ObjectivePlants produce excessive reactive oxygen species(ROS)and have to suffer serious oxidative damage when exposed to long-term abiotic stress. Peroxisomes can remove ROS and regulate the re-dox balance of cells. The PEX gene is involved in the biogenesis and proliferation of peroxisomes. Overexpressing PEX11 lines improve the proliferation of peroxisomes, which is important for the promotion of antioxidant capacity in plants.Populus euphratica is an optimal material for studying stress resistance mechanism in woody plants.Here we are going to explore the function of PEX11 in P.euphratica response to abiotic stress.
    MethodIn this study we isolated PEX11 gene from cDNA of P.euphratica leaves and named it as PePEX11, and bioinformatics tools were used to analyze PePEX11 protein, then qRT-PCR was used to analyze the expression pattern of PePEX11 in P.euphratica.Meanwhile, plant expression vector pCAMBIA1301-35S::PePEX11 was constructed, and Arabidopsis thaliana was transformed for detecting antioxidant capacity under salt stress.
    ResultThe results showed that PePEX11 had 543 bp in length and encoding 180 amino acids. PePEX11 protein had multiple transmembrane domains and may function at the membrane.qRT-PCR analysis showed that PePEX11 gene highly expressed in mature leaves, following by young leaves, and had least expression in stems. The expression level of PePEX11 gene was also up-regulated by salt stress. Function analysis of PePEX11 overexpression lines in Arabidopsis thaliana showed that the root of oxPePEX11 was significantly longer than that of the wild type when treated with 150 mmol/L NaCl in the medium.After two weeks of salt treatment in soil, PePEX11 overexpression lines had better vegetative growth, showing better salt tolerance phenotype. Overexpression of PePEX11 significantly(P < 0.05)increased the activities of several antioxidant enzymes in A. thaliana. In addition, DAB staining assay displayed that the content of H2O2 in leaves of oxPePEX11 was lower than wild type.
    ConclusionIn summary, we cloned PePEX11 from P. euphratica and proved that PePEX11 improved the antioxidant capacity under salt stress and confers salt tolerance in A. thaliana.
  • [1]
    Fahy D, Sanad M N, Duscha K, et al. Impact of salt stress, cell death, and autophagy on peroxisomes: quantitative and morphological analyses using small fluorescent probe N-BODIPY[J].Scientific Report, 2017, 7:39069. doi: 10.1038/srep39069
    [2]
    Hu J, Desai M. Light induces peroxisome proliferation in Arabidopsis seedlings through the photoreceptor phytochrome A, the transcription factor HY5 HOMOLOG, and the peroxisomal protein PEROXIN11b[J]. Plant Physiol, 2008, 146(3):1117-1127. doi: 10.1104/pp.107.113555
    [3]
    Kaur N, Reumann S, Hu J. Peroxisome biogenesis and function[J]. Arabidopsis Book, 2011, 7:e0123. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0216077348/
    [4]
    Gao F Y, Li L, Wang J Y, et al.The functions of PEX genes in peroxisome biogenesis and pathogenicity in phytopathogenic fungi[J].Yi Chuan, 2017, 39(10):908-917. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yc201710005
    [5]
    Homs S, Erdmann R. Dynamin-related proteins and Pex11 proteins in peroxisome division and proliferation[J]. Febs Journal, 2005, 272(20):5169-5181. doi: 10.1111/ejb.2005.272.issue-20
    [6]
    Lingard M J, Gidda S K, Bingham S, et al. Arabidopsis PEROXIN11c-e, FISSION1b, and DYNAMIN-RELATED PROTEIN3A cooperate in cell cycle-associated replication of peroxisomes[J]. Plant Cell, 2008, 20(6):1567-1585. doi: 10.1105/tpc.107.057679
    [7]
    Farre J C, Subramani S. Peroxisome turnover by micropexophagy:an autophagy-related process[J]. Trends Cell Biology, 2004, 14(9):515-523. doi: 10.1016/j.tcb.2004.07.014
    [8]
    Hu J P, Aguirre M, Peto C, et al. A role for peroxisomes in photomorphogenesis and development of Arabidopsis[J].Science, 2002, 297:405-409. doi: 10.1126/science.1073633
    [9]
    An C, Gao Y, Li J, et al.Alternative splicing affects the targeting sequence of peroxisome proteins in Arabidopsis[J]. Plant Cell Reports, 2017, 36(7):1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=86445c47a9952e6fe6020fce763b3556
    [10]
    Orth T, Reumann S, Zhang X, et al. The PEROXIN11 protein family controls peroxisome proliferation in Arabidopsis[J]. Plant Cell, 2007, 19(1):333-350. doi: 10.1105/tpc.106.045831
    [11]
    Rodríguez-serrano M, Romero-puertas M C, Sanz-fernández M, et al. Peroxisomes extend peroxules in a fast response to stress via a reactive oxygen species-mediated induction of the peroxin PEX11a[J]. Plant Physiol, 2016, 171(3): 1665-1674. doi: 10.1104/pp.16.00648
    [12]
    Parida A K, Das A B. Salt tolerance and salinity effects on plants:a review[J]. Ecotoxicology and Environmental Safety, 2005, 60(3):324-349. doi: 10.1016/j.ecoenv.2004.06.010
    [13]
    Jaleel C A, Gopi R, Manivannan P, et al. Antioxdative potentials as a protective mechanism in Catharanthus roseus(L.)G.Don.plants under salinity stress[J]. Turkish Journal of Botany, 2007, 31(3):245-251. http://journals.tubitak.gov.tr/botany/issues/bot-07-31-3/bot-31-3-5-0606-9.pdf
    [14]
    Xing Y, Jia W, Zhang J. AtMKK1 mediates ABA-induced CAT1 expression and H2O2 production via AtMPK6-coupled signaling in Arabidopsis[J]. Plant Journal, 2008, 54(3):440-451. doi: 10.1111/j.1365-313X.2008.03433.x
    [15]
    Slesak I, Libik M, Karpinska B, et al. The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses[J]. Acta Biochimica Polonica, 2007, 54(1):39-50. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e679bf68313ed39ddda8e9fbcd11eb10
    [16]
    Foyer C H, Noctor G. Redox homeostis and antioxidant signaling: a metabolic interface between stress perception and physiological responses[J]. Plant Cell, 2005, 17(7):1866-1875. doi: 10.1105/tpc.105.033589
    [17]
    Mittler R, Vanderauwera S, Gollery M, et al. Reactive oxygen gene network of plants[J]. Trends Plant SCI, 2004, 9(10):490-498. doi: 10.1016/j.tplants.2004.08.009
    [18]
    Li B, Duan H, Li J, et al. Global identification of miRNAs and targets in Populus euphratica under salt stress[J]. Plant Molecular Biology, 2013, 81(6):525-539. doi: 10.1007/s11103-013-0010-y
    [19]
    Ma J, Lu J, Xu J, et al. Genome-wide identification of WRKY genes in the desert poplar Populus euphratica and adaptive evolution of the genes in response to salt stress[J]. Evolutionary Bioinformatics, 2015, 11(Suppl.1):47-55. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Doaj000003931352
    [20]
    Lu X, Dun H, Lian C, et al. The role of peu-miR164 and its target PeNAC genes in response to abiotic stress in Populus euphratica[J]. Plant Physiol Biochem, 2017, 115:418-438. doi: 10.1016/j.plaphy.2017.04.009
    [21]
    Li B, Qin Y, Duan H, et al. Genome-wide characterization of new and drought stress responsive microRNAs in Populus euphratica[J]. Journal of Experiment Botany, 2011, 62(11):3765-3779. doi: 10.1093/jxb/err051
    [22]
    Lingard M J, Trelease R N. Five Arabidopsis peroxin 11 homologs individually promote peroxisome elongation, duplication or aggregation[J]. Journal of Cell Science, 2006, 119(9):1961-1972. doi: 10.1242/jcs.02904
    [23]
    Bartel B, Reumann S. Plant peroxisomes: recent discoveries in functional complexity, organelle homeostasis, and morphological dynamics[J]. Current Opinion in Plant Biology, 2016, 34:17-26. doi: 10.1016/j.pbi.2016.07.008
    [24]
    张影, 练从龙, 段卉, 等.胡杨bZIP转录因子PebZIP26和PebZIP33基因的克隆及功能分析[J].北京林业大学学报, 2017, 39(7):18-30. doi: 10.13332/j.1000-1522.20170109

    Zhang Y, Lian C L, Duan H, et al. Cloning and functional analysis of PebZIP26 and PebZIP33 transcription factors from Populus euphratica[J]. Journal of Beijing Forestry University, 2017, 39(7):18-30. doi: 10.13332/j.1000-1522.20170109
    [25]
    Wang H, Li L, Tang S, et al. Evaluation of appropriate reference genes for reverse transcription-quantitative PCR studies in different tissues of a desert Poplar via comparision of different algorithms[J]. International Journal of Molecular Sciences, 2015, 16(9):20468-22049. doi: 10.3390/ijms160920468
    [26]
    Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T))method[J]. Methods, 2001, 25(4):402-408. doi: 10.1006/meth.2001.1262
    [27]
    Luo P, Shen Y, Jin S, et al. Overexpression of Rosa rugosa anthocyanidin reductase enhances tobacco tolerance to abiotic stress through increased ROS scavenging and modulation of ABA signaling[J]. Plant Science, 2016, 245:35-49. doi: 10.1016/j.plantsci.2016.01.007
    [28]
    康建宏, 吴宏亮, 黄灵丹.干旱预处理的玉米幼苗对逆境的交叉适应研究[J].干旱地区农业研究, 2008, 26(6):143-148. http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj200806028

    Kang J H, Wu H L, Huang L D. Cross adaptation of stress on maize seedings under drought induced[J]. Agricultural Research in the Arid Areas, 2008, 26(6):143-148. http://d.old.wanfangdata.com.cn/Periodical/ghdqnyyj200806028
    [29]
    Hayashi M, Nishimura M. Entering a new era of research on plant peroxisomes[J].Current Opinion in Plant Biology, 2003, 6(6):577-582. doi: 10.1016/j.pbi.2003.09.012
    [30]
    Reumann S, Weber A P. Plant peroxisomes respire in the light: some gaps of the photorespiratory C-2 cycle have become filled-others remain[J]. Biochim Biophys ACTA, 2006, 1763(12):1496-1510. doi: 10.1016/j.bbamcr.2006.09.008
    [31]
    崔慧萍, 周薇, 郭长虹.植物过氧化物酶体在活性氧信号网络中的作用[J].中国生物化学与分子生物学报, 2017, 33(3):220-226. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgswhxyfzswxb201703003

    Cui H P, Zhou W, Guo C H.The role of plant peroxisomes in ROS signalling network[J]. Chinese Journal of Biochemistry and Molecular Biology, 2017, 33(3):220-226. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgswhxyfzswxb201703003
    [32]
    Leterrier M, Corpas F J, Barroso J B, et al. Peroxisomal monodehydroascorbate reductase: genomic clone characterization and functional analysis under environmental stress conditions[J]. Plant Physiology, 2005, 138(4):2111-2122. doi: 10.1104/pp.105.066225
    [33]
    肖国增, 滕珂, 李林洁, 等.盐胁迫下匍匐翦股颖抗氧化酶活性及基因表达机制研究[J].草业学报, 2016, 25(9):74-82. http://d.old.wanfangdata.com.cn/Periodical/caoyexb201609009

    Xiao G Z, Teng K, Li L J, et al. Antioxidant enzyme activity and gene expression in creeping bentgrass under salt stress[J].Acta Prataculturae Sinica, 2016, 25(9):74-82. http://d.old.wanfangdata.com.cn/Periodical/caoyexb201609009
    [34]
    刘凤歧, 刘杰淋, 朱瑞芬, 等.4种燕麦对NaCl胁迫的生理响应及耐盐性评价[J].草业学报, 2015, 24(1):183-189. http://d.old.wanfangdata.com.cn/Periodical/caoyexb201501022

    Liu F Q, Liu J L, Zhu R F, et al.Physiological responses and tolerance of four oat varieties to salt stress[J].Acta Prataculturae Sinica, 2015, 24(1):183-189. http://d.old.wanfangdata.com.cn/Periodical/caoyexb201501022
    [35]
    杨传宝, 孙超, 李善文, 等.白杨派无性系苗期耐盐性综合评价及筛选[J].北京林业大学学报, 2017, 39(10):24-32. doi: 10.13332/j.1000-1522.20170323

    Yang C B, Sun C, Li S W, et al. Comprehensive evaluation and screening of salt tolerance for Leuce clones at nursery stage[J]. Journal of Beijing Forestry University, 2017, 39(10):24-32. doi: 10.13332/j.1000-1522.20170323
    [36]
    Yang Y, Shi R, Wei X, et al. Effect of salinity on antioxidant enzymes in calli of the halophyte Nitraria tangutorum Bobr.[J]. Plant Cell Tissue & Organ Culture, 2010, 102(3):387-395. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a13dd047875201c156bba4feb893014d
  • Related Articles

    [1]Zhang Bo, Lu Kaiyan, Zhang Xiaoyu, Wu Rongling. Root development and genetic regulation in Populus euphratica under salt stress[J]. Journal of Beijing Forestry University, 2025, 47(1): 72-84. DOI: 10.12171/j.1000-1522.20230374
    [2]Wen Xin, Yin Kexin, Ma Siyuan, Zhang Xiaomeng, Zhao Nan, Zhou Xiaoyang, Zhao Rui, Chen Shaoliang. Overexpression of Populus euphratica PePKS5 enhancing salt tolerance of Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2024, 46(2): 62-74. DOI: 10.12171/j.1000-1522.20220480
    [3]Feng Lei, Xu Wanli, Tang Guangmu, Zhang Yunshu, Gu Meiying. Characteristics of Lycium ruthenicum adapting to salinization stress after salt tolerance training[J]. Journal of Beijing Forestry University, 2020, 42(12): 83-90. DOI: 10.12171/j.1000-1522.20200123
    [4]Liu Junling, Liang Kehao, Miao Yahui, Hu Anni, Sun Yongjiang, Zhang Lingyun. Characteristics of PwUSP1 in Picea wilsonii and its response to drought and salt stress[J]. Journal of Beijing Forestry University, 2020, 42(10): 62-70. DOI: 10.12171/j.1000-1522.20200063
    [5]Yan Wenhua, Wu Dejun, Yan Liping, Wang Yinhua, Ren Fei, Yan Lin, Liu Jie, Yu Linlin. Comprehensive evaluation of salt tolerance of clones of Fraxinusin spp. seedling stage under salt stress[J]. Journal of Beijing Forestry University, 2019, 41(11): 44-53. DOI: 10.13332/j.1000-1522.20180438
    [6]Zhao Haiyan, Wei Ning, Sun Congcong, Bai Yilin, Zheng Caixia. Effects of salt stress on anatomic structure of tissue and photosynthesis in Ginkgo biloba seedlings[J]. Journal of Beijing Forestry University, 2018, 40(11): 28-41. DOI: 10.13332/j.1000-1522.20180258
    [7]LI Qiang, YANG Hong-qiang, SHEN Wei. Polyamine content and effects of spermine and spermidine on lipid peroxidation induced by salt stress in Malus hupehensis Rehd.[J]. Journal of Beijing Forestry University, 2011, 33(6): 173-176.
    [8]LI Jing, LIU Qun-lu, TANG Dong-qin, ZHANG Ting-ting. Effects of salt stress and salt leaching on the physiological characteristics of Chaenomeles speciosa[J]. Journal of Beijing Forestry University, 2011, 33(6): 40-46.
    [9]YAN Hui, XIA Xin-li, GAO Rong-fu, YIN Wei-lun. Primary response of plasma membrane potential on root caps of Ammopiptanthus mongolicus and Phaseolus radiatus to salt stress.[J]. Journal of Beijing Forestry University, 2008, 30(6): 16-21.
    [10]SONG Ying-qi, YANG Qian, QIN Gen-ji, QU Li-jia. AtPIP5K2 gene involved in regulating the sensitivity to salt stress of Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2006, 28(5): 78-83.
  • Cited by

    Periodical cited type(7)

    1. 刘巧娟,张之松,满秀玲,高明磊,赵佳龙. 寒温带多年冻土区不同林龄白桦林土壤酶活性动态特征. 东北林业大学学报. 2024(03): 125-131 .
    2. 高海燕,杨制国,张胜男,黄海广,闫德仁. 科尔沁沙地油松人工林林龄对土壤酶活性及化学性质的影响. 中南林业科技大学学报. 2024(02): 108-117 .
    3. 赵娜,沈爱红,石云,佘洁,张风红,郭瑞,吴涛,李建华,朱晓雯,李红霞. 贺兰山东麓冲积扇区不同微地形土壤理化性质及酶活性特征. 西南农业学报. 2023(11): 2451-2463 .
    4. 伍晓丽,潘媛,赵晓,谭均,陈大霞. 玄参与烟草轮作对根际土壤养分、酶活性及微生物群落结构的影响. 西南农业学报. 2022(01): 58-64 .
    5. 王小燕,姚宝辉,张彩军,王缠,孙小妹,苏军虎. 甘南“黑土滩”型退化草甸土壤理化特性及酶活性季节变化. 草地学报. 2021(02): 220-227 .
    6. 张亚,张文静,杨礼通,雷应雪,杨丽,蔡晓林,梁清,肖玖金. 火烧迹地不同植被恢复下土壤团聚体酶活性特征. 四川农业大学学报. 2021(01): 79-85 .
    7. 刘金炽,招礼军,朱栗琼,权佳惠,金赟. 喀斯特地区泡核桃林土壤酶、微生物量及无机氮的动态研究. 广东农业科学. 2020(10): 83-92 .

    Other cited types(12)

Catalog

    Article views (3069) PDF downloads (120) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return